Math, asked by rajjavalgi, 1 day ago

adjacent angles of a parallelogram are in the ratio 2:3 find the measures of the angles of a parallelogram​

Answers

Answered by StarFighter
8

Answer:

Given :-

  • The two adjacent angles of a parallelogram are in the ratio of 2 : 3.

To Find :-

  • What is the measures angles of a parallelogram.

Solution :-

Let,

\mapsto \bf First\: Angle_{(Parallelogram)} =\: 2x\\

\mapsto \bf Second\: Angle_{(Parallelogram)} =\: 3x\\

As we know that :

\footnotesize \: \: \bigstar \: \: \sf\boxed{\bold{Sum\: of\: two\: adjacent\: angles_{(Parallelogram)} =\: 180^{\circ}}}\: \: \: \bigstar\\

So, according to the question by using the formula we get,

\implies \bf 2x + 3x =\: 180^{\circ}

\implies \sf 5x =\: 180^{\circ}

\implies \sf x =\: \dfrac{180^{\circ}}{5}\\

\implies \sf\bold{x =\: 36^{\circ}}\\

Hence, the required adjacent angles of a parallelogram are :

\dag First Angle Of Parallelogram :

\dashrightarrow \sf First\: Angle_{(Parallelogram)} =\: 2x

\dashrightarrow \sf First\: Angle_{(Parallelogram)} =\: 2 \times 36^{\circ}\\

\dashrightarrow \sf\bold{\underline{First\: Angle_{(Parallelogram)} =\: 72^{\circ}}}\\

\dag Second Angle Of Parallelogram :

\dashrightarrow \sf Second\: Angle_{(Parallelogram)} =\: 3x\\

\dashrightarrow \sf Second\: Angle_{(Parallelogram)} =\: 3 \times 36^{\circ}\\

\dashrightarrow \sf\bold{\underline{Second\: Angle_{(Parallelogram)} =\: 108^{\circ}}}\\

\therefore The measures of adjacent angles of a parallelogram is 72° and 108° respectively.

Answered by AnanyaBaalveer
1

Given:-

  • Ratio of two adjacent angles is = 2:3

To find:-

  • The measure of those angles.

Solution:-

★We can assume that the measure of angles be "x" and we also know that the sum of adjacent angles of a parallelogram is 180°.★

  \sf{\longmapsto Let \: the \: measure \: of \: angle \: be \:  \red{x}}

\sf{ \longmapsto Measure \: of \:  {1}^{st} angle  = 2x}

{\sf{ \longmapsto Measure \: of  {2}^{nd} \:  angle = 3x}}

»»»We know that the sum of adjacent angles is 180°.«««

Hence,

\large \underline{\sf{ \implies 2x + 3x = 180 \degree}}

\large\underline{\sf{ \implies 5x = 180 \degree}}

\large\underline{\sf{ \implies x= \frac{180 \degree}{5}  }}

\large \blue{\underline{ \green {\boxed{\sf{ \red{  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \implies x = 36 \degree \:  \:  \: \:  \:  \:  \:   \:  \: \:  \:  \:  \:  }}}}}}

Calculating for angles:-

\large \blue{\underline{ \green {\boxed{\sf{ \red{ \implies2x = 2 \times 36 \degree = 72 \degree}}}}}}

\large \blue{\underline{ \green{ \boxed{\sf{ \red{ \implies3x = 3 \times 36 \degree = 108 \degree}}}}}}

______________________________________

Verification:-

We know that sum of interior angles of a quadrilateral(parallelogram) is 360°.

\large\underline{\sf{ \implies{2 \times (72 \degree + 108 \degree)}}}

\large\underline{\sf{ \implies2 \times 180 \degree}}

\large \blue{\underline{ \green{ \boxed{ \sf{ \red{ \implies360 \degree}}}}}}

Hence verified!!

Henceforth the value of the adjacent angles in ratio 2:3 is (72° and 108°).

Similar questions