Math, asked by ruchitapsarathy, 21 days ago

Adjoining figure shows the rate of interest of 8 % per annum for car loan from AVP bank . Mr. Hegde took a loan of Rs 5,00,000 for a period of 3 years. Find the amount and interest paid by Mr. Hegde at the end of the loan period when compounded annually.​

Answers

Answered by XxLUCYxX
2

\color{red} \large \bold{Given,} \\ \\ \sf Principal\:=\:₹\:500000\:\:\:| \:\:\: Time\:=\:3\:years\:\:\:| \:\:\:Rate\:of\:Intrest\:=\:8\% \\  \\ \color{aqua} \ \bold{To \: find \: the \: amount \: and \: intrest} \\  \\ \sf Amount  \: on  \: a  \: certain  \: sum  \: of \:  money  \: of \:  P  \: invested  \: at \:  the \:  rate  \: of  \: r  \%  \: per \:  \\  \sf annum \:   compounded  \: annually \:  for \:  n \:  years \:  is  \: given \:  by \:  \:  \color{lime}  \boxed{\:  \sf \: Amount\:=\:P[1\:+\: \frac{r}{100}]^n} \\  \\  \large\:  \text{Substituting\:the\:values,\:we\:get,} \\  \\  \sf \: Amount\:=\:500000 \left[ 1\:+\: \frac{8}{100} \right]^3 \\  \\  \sf \: Amount\:=\:500000 \:   \times  \: 1.259712 \\  \\ \color{gold} \sf { \underline{Amount\:=\:₹\:629856}} \\  \\  \color{olive} \boxed{ \sf \: Intrest\:=\: Amount\:-\: Principal} \\  \\ \sf \: Intrest\:=\:629856 \:  -  \: 500000 \\  \\  \color{skyblue}\sf \:{ \underline{ Intrest\:=\:₹\:129856}} \\  \\  \sf \: At\:the\:end\:Mr.\:Hegde \: will \: pay \: ₹\:629856 \: as \: amount \: and \: ₹\:129856  \: as \: intrest.

 \color{silver}\rule{200000000 pt}{2pt}

 \color{green} \boxed{ \begin {array} { |c|c|c|}  Statement&Formulas  \\  \\  \\❑ \: Amount  \: on  \: a  \: certain  \: sum  \: of \:  money  \: of \:  P  \: invested  \: at \:  the \:  rate  \: of  \: r  \%  \: per \:  \\  annum \:   compounded  \: annually \:  for \:  n \:  years \:  is  \: given \:  by &❑ \:  Amount\:=\:P[1\:+\: \frac{r}{100}]^n \\  \\ ❑ \: Amount \:  on  \: a  \: certain  \: sum  \: of  \: money \:  of  \: P \:  invested \:  at  \: the \:  rate \:  of \:  r  \%  \: per \\   \: annum  \: compounded  \: quarterly \:  for \:  n \:  years \:  is  \: given  \: by &❑ \:Amount\:=\:P[1\:+\: \frac{r}{200}]^{4n} \\  \\  ❑ \:Amount \:  on \:  a  \: certain \:  sum \:  of  \: money  \: of \:  P \:  invested \:  at  \: the \:  rat e \:  of \:  r  \% \:  per  \:  \\ annum \:  compounded  \: monthly \:  for  \: n  \: years  \: is  \: given \:  b  y&❑\:Amount\:=\:P\:[1\:+\: \frac{r}{1200}]^{12n} \\  \\ ❑ \:Amount\:on\:a\: certain\:sum\:of\:money\:P\:invested \:at\:a\:rate\:of\:\%\:per\:annum\: \\  compound\:semi\: annually\:for\:n\:years\:is\: given\:by &❑ \:  Amount\:=\:P\: \left[ \:1\:+\: \frac{r}{200} \right]^{2n}\: \end {array}}

Similar questions
Biology, 9 months ago