Math, asked by adarshsinghz, 16 days ago

Advait’s mother gave him some money to buy Papaya from the market at the rate of p(x) = x2 – 12x – 220. Let α, β are the zeroes of p(x). Based on the above information, answer the following questions. Q1. Find the values of α and β, where α < β. a) –22 and 10 b) –10 and 22 c) 2 and 14 d) –20 and 8 Q2. Find the value of α + β + αβ. a) 232 b) -232 c) 208 d) –208 Q3. The value of p(4) is a) –268 b) –168 c) –252 d) –164​

Answers

Answered by muhammadfaizeens
24
Instead of alpha and beta , I am taking it as a and b.
x2-12x-220=0
x2-22x+10x-220=0
x(x-22)+10(x-22)=0
(x-22)(x+10)=0
x=22 or x=-10

Q1) Value of alpha and beta is 22 and -10

Q2)a+b+ab=22+-10+22X-10=22-10-220=
-208

Q3)4X4-12X4-220=16-48-220= -252

Answered by priyarksynergy
22

Given is a quadratic equation p(x)=x^2-12x-220. Find its zeroes and other related values.

Explanation:

  • Let there be a quadratic equation of the form ax^2+bx+c having its zeroes \alpha,\ \beta such that \alpha&lt;\beta.
  • Then using the quadratic formula we have the zeros as, \alpha=\frac{-b-\sqrt{b^2-4ac} }{2a}\ \ \ \ \beta= \frac{-b+\sqrt{b^2-4ac} }{2a}                           -----------(a) -&gt;\alpha+\beta+\alpha\beta=\frac{c-b}{a}                                            -----------(b)
  • Now here we have p(x)=x^2-12x-220
  • Hence we have, a=1,\ b=-12,\ c=-220  
  • From (a) and (b) we get,
  • ANSWER.1:
  •                 \alpha=\frac{12-\sqrt{144+880} }{2}\ \ \ \ \beta= \frac{12+\sqrt{144+880} }{2}\\\\-&gt;\alpha=-10,\ \beta=22 ->Option(b)
  • ANSWER.2:
  •               \alpha+\beta+\alpha\beta=\frac{-220+12}{1}\\-&gt;\alpha+\beta+\alpha\beta=-208           ->Option(d)
  • ANSWER.3:
  •               p(x)=x^2-12x-220\\p(4)=4^2-12(4)-220\\-&gt;p(4)=-252            ->Option(c)
Similar questions