Math, asked by maheshbabu9443546946, 23 hours ago

Advanced: a,b,c are positive numbers such that a+b+ab= 8, b+c+bc=15 and c+a+ca = 35 What is the value of a+b+c+abc?

Answers

Answered by user0888
44

\huge\text{36}

\large\underline{\large\underline{\text{How to solve?}}}

If we add 1, the factors can be separated. Since we know that all the three factors recur twice, we also know that each exponent will be 2.

To reduce the equation, we take the positive square root on both sides.

\large\underline{\large\underline{\text{Explanation}}}

We have to solve,

\cdots \longrightarrow \begin{cases} & a+b+ab=8 \\  & b+c+bc=15 \\  & c+a+ca=35. \end{cases}

It is equivalent to,

\cdots \longrightarrow \begin{cases} & 1+a+b+ab=9 \\  & 1+b+c+bc=16 \\  & 1+c+a+ca=36. \end{cases}

Let equation 1 be,

\cdots \longrightarrow (a+1)(b+1)=9.\ \cdots (1)

Let equation 2 be,

\cdots \longrightarrow (b+1)(c+1)=16.\ \cdots (2)

Let equation 3 be,

\cdots \longrightarrow (c+1)(a+1)=36.\ \cdots (3)

By (1) \times (2) \times (3),

\cdots \longrightarrow \{(a+1)(b+1)(c+1)\}^{2}=(3 \cdot 4 \cdot 6)^{2}

Let's recall that three numbers are positive, so,

\cdots \longrightarrow (a+1)(b+1)(c+1)=3 \cdot 4 \cdot 6.\ \cdots (4)

By (4) \div (2),

\cdots \longrightarrow a+1= \dfrac{9}{2} \iff a=\dfrac{7}{2} .

By (4) \div (3),

\cdots \longrightarrow b+1=2 \iff b=1.

By (4) \div (1),

\cdots \longrightarrow c+1=8 \iff c=7.

Hence,

\cdots \longrightarrow a+b+c+abc=36.

Answered by BrainlyPhenominaL
58

 \text{Given : a, b, c are positive numbers such that} \\  \frak{a+b+ab= 8, b+c+bc=15 \:  and  \: c+a+ca = 35}. \\   \text{What is the value of} \:  \frak{ a+b+c+abc?}

 \text{So, as per the let's follow the steps to get the required answer}

 \dashrightarrow \frak{a + b + ab = 8} \\  \\  \dashrightarrow \frak{a(1 + b) + b  = 8} \\  \\  \dashrightarrow \frak{a(1 + b) = 8 - b} \\  \\ \dashrightarrow  \green{\frak{a =  \frac{8 - b}{1 + b}}}

  \text{Now, getting the second one} \\  \hookrightarrow  \frak{b + c + bc = 15} \\  \\ \hookrightarrow  \frak{b + c(1 + b) = 15} \\ \\ \hookrightarrow  \frak{c(1 + b) = 15 - b} \\  \\ \hookrightarrow   \red{\frak{c =  \frac{15 - b}{1 + b}}}

  \text{Finally getting the last one out} \\  \looparrowright \frak{c + a + ca = 35} \\  \\ \looparrowright \frak{ \frac{15 - b}{1 + b} +  \frac{8 - b}{1 + b} +  (\frac{15 - b}{1 + b})( \frac{8 - b}{1 + b}) = 35} \\  \\ \looparrowright \frak{ \frac{15 - b + 8 - b}{1 + b} +     \frac{120 - 15b - 8b +  {b}^{2} }{(1 + b)^{2} }  = 35} \\  \\  \looparrowright \frak{(23 - 2b)(1 + b) + 120 - 23b + b ^{2} = 35 {(1 + b)}^{2}  } \\  \\ \looparrowright \frak{36 {b}^{2} + 72b - 108 = 0 } \\   \qquad \rm{now \: following \: quadratic \: equations \: we \: get}  \\  \\ \looparrowright \frak{(b + 3)(b - 1) = 0} \\  \\   \blue{\frak{b = 1}} \frak{(as \: all \: are \: positive)}

 \sf{As  \: we \:  got  \: b's  \: value  \: so  \: let's \:  put  \: them  \: in  \: the  \: first  \: 2  \: cases \: to \: get \: a \: and \: c }

 \text{value of a}  \\  \quad  : \implies \frak{ \frac{8 - b}{1 + b} } \\  \\: \implies \frak{ \frac{8 - 1}{1 + 1} } \\  \\: \implies \frak{ \frac{7}{2} } \\  \\ \text{value of c}  \\  \quad : \implies \frak{ \frac{15- b}{1 + b} } \\  \\: \implies \frak{ \frac{15- 1}{1 + 1} } \\  \\ : \implies \frak{ \frac{14}{2} } \\  \\: \implies \frak{ 7 }

 \text{ Getting the value of }  \:  \frak{a + b + c + abc  } \\  \quad  : \implies  \frak{ \frac{7}{2} + 1 + 7 +  \frac{7}{2} \times 1 \times 7  } \\  \\ \quad  : \implies  \frak{  \frac{7 + 2 + 14}{2}   +  \frac{49}{2} }  \\  \\ \quad   :  \implies \frak{   \frac{23}{2}  +  \frac{49}{2}} \\  \\ \quad  : \implies  \frak{  \frac{72}{2}} \\  \\ \qquad   \star   \quad \boxed{ \pink{\frak{ 36 }}} \\  \\     \therefore\underline{\green{\sf{36 \: is \: the \: required \: answer}}}

Similar questions