AE is the diameter of a circle with centre O,the points B,C,E are on the circle such that AB=BC=CD=DE ,calculate angle DAE
Attachments:
Answers
Answered by
2
Given: AE is the diameter, AB=BC=CD=DE
To find: angle DAE = ?
Solution:
- As we have given that AE id diameter so considering any triangle with the base AE will have one angle as 90°.
- eg: consider triangle DAE, we have ang ADE = 90°.
- Now, since AB=BC=CD=DE is given in the question, so the angle subtended by these sides will be equal.
- Hence ang AOB = ang BOC = ang COD = ang DOE
- So, ang AOB + ang BOC + ang COD + ang DOE = 180°
(linear pair)
4( ang AOB) = 180°
ang AOB = 180° /4 = 45°
- Similarly:
ang DOE = 45°
- Now, ang ODE = ang OED ............as radius is equal(OD = OE)
- So, ang ODE = ang OED = 67.5° = ang DEA
ang DEA = 67.5° (answer as per question in figure)
- Now, in triangle ADE,
ang AED + ang EDA + ang DAE = 180°
67.5° + 90° + ang DAE = 180°
ang DAE = 180° - (67.5° + 90°)
ang DAE = 22.5° (answer as per question in the question typed)
Answer:
So the angle DEA is 67.5°.
Similar questions