Math, asked by supu7433, 1 month ago

Aeaa of a ∆ABC is P square units.
(I) D is the midpoint of AB. Find the areas of triangles ADC and DBC, show that the two are equal
(ii) Point E and F divide AB into three equal parts. Find the areas of triangles AEC,EFC and FBC, and show that the three are equal​

Answers

Answered by Anonymous
3

íf α línє íѕ drαwn pαrαllєl tσ σnє ѕídє σf α tríαnglє tσ íntєrѕєct thє

σthєr twσ ѕídєѕ ín díѕtínct pσíntѕ, thє σthєr twσ ѕídєѕ αrє dívídєd ín thє ѕαmє rαtíσ.

αѕ pq∥вc 

ѕσ pвαp=qcαq

∠αqp=∠αcв

∠αpq=∠αвc

ѕσ вч ααα △αqp∼△αcв

thє rαtíσ σf thє αrєαѕ σf twσ ѕímílαr tríαnglєѕ íѕ єquαl tσ thє ѕquαrє σf thє rαtíσ σf thєír cσrrєѕpσndíng ѕídєѕ.

hєncє αrєα(αвc)αrєα(αpq)=(αв)2(αp)2

αrєα(αвc)αrєα(αpq)=(αp+pв)2(αp)2

αrєα(αвc)αrєα(αpq)=(3х)2(х)2

αrєα(αвc)αrєα(αpq)=91

lєt αrєα(αpq)=k

αrєα(αвc)=9k

αrєα(вpqc)=αrєα(αвc)−αrєα(αpq)=9k−k=8k

αrєα(вpqc)αrєα(αpq)=81

∴ thє rαtíσ σf thє △αpq αnd trαpєzíum вpqc =81

Attachments:
Similar questions