Math, asked by palakjn2002, 4 months ago

. After an analysis of incoming faxes, the manager of an accounting firm determined the
probability distribution of the number of pages (X) per facsimile as follows:
X 1 2 3 4 5 6 7
P(x) 0.05 0.12 0.20 0.30 0.15 0.10 0.08
Calculate the mean and variance of the number of pages per fax. Further analysis by manager
revealed that the cost of processing each page of a fax is $0.25. Determine the mean and variance
of cost per fax.

Answers

Answered by amitnrw
0

Given : probability distribution of the number of pages (X)

X 1 2 3 4 5 6 7

P(x) 0.05 0.12 0.20 0.30 0.15 0.10 0.08

To Find : mean and variance of the number of pages per fax.

Determine the mean and variance of cost per fax.

Solution:

X        P(x)              XP(X)            X²P(X)

1        0.05             0.05              0.05

2      0.12               0.24               0.48

3      0.2                 0.6               1.8

4      0.3                1.2              4.8

5      0.15              0.75              3.75

6      0.1                 0.6                3.6

7       0.08              0.56                3.92

              1                4                    18.4

Mean =   ∑X(P(X)  = 4

mean  of the number of pages per fax = 4

cost of processing each page of a fax is $0.25.

mean of cost per fax. = 4 * 0.25  = 1  $

Variance  =  ∑X²P(X)  - (∑X(P(X))²  =  18.4 - 4²

= 18.4 - 16

= 2.4

variance of the number of pages per fax = 2.4

cost of processing each page of a fax is $0.25.

variance of cost per fax. = 2.4 * 0.25  = 0.6  $

 

Learn More:

A r.v. X has the given probability distribution, Find the value of k and .

https://brainly.in/question/6536531

If the probability of selecting a defective bolt is 0.1, find (1) the ...

https://brainly.in/question/11773467

Similar questions