Math, asked by AyeshaDiya, 1 year ago

After how many places of decimal will the decimal expansion of 147/120 terminate?

Answers

Answered by pinquancaro
141

Answer:

3 decimal places.

Step-by-step explanation:

Given : Number \frac{147}{120}

To find : After how many places of decimal will the decimal expansion of number terminate?

Solution :

The prime factorization of numerator and denominator is

147=3\times 7\times 7

120=2\times 2\times 2\times 3\times 5

\frac{147}{120}=\frac{3\times 7\times 7}{2\times 2\times 2\times 3\times 5}

Eliminate the 3 from numerator and denominator.

\frac{147}{120}=\frac{7\times 7}{2\times 2\times 2\times 5}

The power of 2 in the denominator gives u the number of decimal terminate.

The power of 2 is 2^3

The places of decimal will the decimal expansion is 3 places.

\frac{147}{120}=1.225

Answered by mysticd
39

Answer:

Decimal place come after one digit .

Step-by-step explanation:

Given\\\frac{147}{120}=\frac{3\times 49}{3\times 40}=\frac{49}{40}

 Denominator \: (q)= 40=2^{3}\times 5

 q \: of \: the \: form \: 2^{n}\times 5^{m}

Therefore,

\frac{147}{120} \: is \: a \: terminating\: decimal

\frac{147}{120}=\frac{49}{40}\\=\frac{49}{2^{3}\times 5}\\=\frac{49\times 5^{2}}{2^{3}\times 5^{3}}\\=\frac{1225}{(10^{3})}\\=\frac{1225}{1000}\\=1.225

Therefore,

Decimal place come after one digit .

Similar questions