Math, asked by MrDarkk, 9 months ago

After Long.......


Do Disss Guyzzzz!!!

Btw New update is cool but I guess comments R still not posting​

Attachments:

Answers

Answered by senboni123456
0

Step-by-step explanation:

Given to integrate is

 \frac{ \sqrt[3]{x} }{x( \sqrt{x} +  \sqrt[3]{x}  )}

Now we have,

 \int \frac{ \sqrt[3]{x} dx}{x( \sqrt{x}  +  \sqrt[3]{x} )}

Let

x =  {y}^{6}  \:  =  > dx = 6 {y}^{5} dy

so,

 \int \frac{ {y}^{2} . \: 6 {y}^{5} \: dy }{ {y}^{6}( {y}^{3}  +  {y}^{2} )  }

 =  >  \int \frac{6 {y}^{7} dy}{ {y}^{7}( {y}^{2}   + y)}

 =  > 6 \int \frac{dy}{ {y}^{2}  + y}

 =  > 6 \int \frac{dy}{ {y}^{2}  + y +  { (\frac{1}{2}) }^{2} -  {( \frac{1}{2} })^{2}  }

 =  > 6 \int \frac{dy}{(y +  \frac{1}{2} )^{2}  -  {( \frac{1}{2} )}^{2} }

 =  > 6 \times  \frac{1}{2 \times  \frac{1}{2} }  ln | \frac{(y +  \frac{1}{2} ) -  \frac{1}{2} }{(y +  \frac{1}{2}) +  \frac{1}{2}  } |  + c

 =  > 6  \: ln | \frac{y}{y + 1} |   + c

 =  >6 \:  ln | \frac{ \sqrt[6]{x} }{ \sqrt[6]{x}  + 1}  | + c

Similar questions