Chemistry, asked by sanjana4727, 9 months ago

After movies
Explain ionic bond formation
In H2O
NH3
CH4​

Answers

Answered by ItsParthVats
0

Answer:

CO-ORDINATE (DATIVE COVALENT) BONDING

This page explains what co-ordinate (also called dative covalent) bonding is. You need to have a reasonable understanding of simple covalent bonding before you start.

Important! If you are uncertain about covalent bonding follow this link before you go on with this page.

Co-ordinate (dative covalent) bonding

A covalent bond is formed by two atoms sharing a pair of electrons. The atoms are held together because the electron pair is attracted by both of the nuclei.

In the formation of a simple covalent bond, each atom supplies one electron to the bond - but that doesn't have to be the case. A co-ordinate bond (also called a dative covalent bond) is a covalent bond (a shared pair of electrons) in which both electrons come from the same atom.

For the rest of this page, we shall use the term co-ordinate bond - but if you prefer to call it a dative covalent bond, that's not a problem!

The reaction between ammonia and hydrogen chloride

If these colourless gases are allowed to mix, a thick white smoke of solid ammonium chloride is formed.

Ammonium ions, NH4+, are formed by the transfer of a hydrogen ion from the hydrogen chloride to the lone pair of electrons on the ammonia molecule.

When the ammonium ion, NH4+, is formed, the fourth hydrogen is attached by a dative covalent bond, because only the hydrogen's nucleus is transferred from the chlorine to the nitrogen. The hydrogen's electron is left behind on the chlorine to form a negative chloride ion.

Once the ammonium ion has been formed it is impossible to tell any difference between the dative covalent and the ordinary covalent bonds. Although the electrons are shown differently in the diagram, there is no difference between them in reality.

Representing co-ordinate bonds

In simple diagrams, a co-ordinate bond is shown by an arrow. The arrow points from the atom donating the lone pair to the atom accepting it.

Dissolving hydrogen chloride in water to make hydrochloric acid

Something similar happens. A hydrogen ion (H+) is transferred from the chlorine to one of the lone pairs on the oxygen atom.

The H3O+ ion is variously called the hydroxonium ion, the hydronium ion or the oxonium ion.

In an introductory chemistry course (such as GCSE), whenever you have talked about hydrogen ions (for example in acids), you have actually been talking about the hydroxonium ion. A raw hydrogen ion is simply a proton, and is far too reactive to exist on its own in a test tube.

If you write the hydrogen ion as H+(aq), the "(aq)" represents the water molecule that the hydrogen ion is attached to. When it reacts with something (an alkali, for example), the hydrogen ion simply becomes detached from the water molecule again.

Note that once the co-ordinate bond has been set up, all the hydrogens attached to the oxygen are exactly equivalent. When a hydrogen ion breaks away again, it could be any of the three.

The reaction between ammonia and boron

Similar questions