Math, asked by AboliOdyuo, 11 months ago

After rationalizing the denominator of 7/3√3-2√2​,we get the denominator as:
plz explain me the answer in detail

Answers

Answered by BrainlyConqueror0901
14

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \implies  \frac{7}{3 \sqrt{3} }  - 2 \sqrt{2}  \\  \\  \implies  \frac{7}{3 \sqrt{3} }  \times  \frac{ \sqrt{3} }{ \sqrt{3} }  - 2 \sqrt{2}  \\  \\  \implies  \frac{7 \sqrt{3} }{3 \times  \sqrt{3 \times 3} }  - 2 \sqrt{2}  \\  \\  \implies  \frac{7 \sqrt{3} }{3 \times 3}  - 2 \sqrt{2}  \\  \\  \implies  \frac{7 \sqrt{3} }{9}  - 2 \sqrt{2}  \\  \\  \implies  \frac{7 \sqrt{3} - 18 \sqrt{2}  }{9}  \\  \\  \implies  \frac{7 \times 1.7 - 18 \times 1.4}{9}  \\  \\  \implies  \frac{ - 13.3}{9}  \\  \\  \text{If \: question \: is-} \\  \implies  \frac{7}{3 \sqrt{3} - 2 \sqrt{2}  }  \\  \\  \implies  \frac{7}{3 \sqrt{3} - 2 \sqrt{2}  }  \times   \frac{3 \sqrt{3} +  2\sqrt{2}  }{ 3\sqrt{3}  + 2 \sqrt{2} }  \\  \\  \implies  \frac{7(3 \sqrt{3}  + 2 \sqrt{2} )}{ (3\sqrt{3})^{2}  - ( {2 \sqrt{2)} }^{2}  }  \\  \\  \implies  \frac{21 \sqrt{3} + 14 \sqrt{2}  }{9 \times 3 - 4 \times 2}  \\   \\  \implies  \frac{20 \sqrt{3} + 14 \sqrt{2}  }{27 - 8}  \\  \\  \implies  \frac{20 \sqrt{3} +  14\sqrt{2}  }{19}  \\  \\  \implies  \frac{20 \times 1.7 + 14 \times 1.4}{19}  \\  \\  \implies  \frac{34 + 19.6}{19}  \\  \\  \implies  \frac{53.6}{19}  \\  \\  \implies  2.82

Similar questions