Math, asked by nanu2688, 3 months ago

After simplification the complex number (3 + i)(1+ 3i)² reduces to the form...
a) 3 +3i b) -9 c)-30 + 10i d) 10 + 30i
Ans, options:
1. 3+3i
2. -9
3. - 30 + 1Oi
4. 10+ 30i​

Answers

Answered by aryan073
2

Given :

• The given complex numbers is (3+i)(1+3i)²

To Find :

• The value of (3+i)(1+3i)²=?

Formula :

The values of complex numbers (iota) :

 \bullet \sf \:  {i}^{0}  = 1

 \bullet \sf \:  {i}^{1}  = i

 \bullet \sf \:  {i}^{2}  =  - 1

 \bullet \sf \:  {i}^{3}  =  {i}^{2}  \times i =  - i

 \bullet \sf \:  {i}^{4}  =  {( {i}^{2} )}^{2}  = 1

Solution :

The given expression of the complex number is (3+i)(1+3i)²

 \implies \sf \: (3 + i) {(1 + 3i)}^{2}

By using formula :

 \bullet \sf \:  {(a + b)}^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab

  \\ \implies \sf \: (3 + i) \bigg( {(1)}^{2}  +  {(3i)}^{2}  + 2 \times 1 \times 3i \bigg)

 \implies \sf \: (3 + i)(1 - 9 + 6i)

 \implies \sf \: (3 + i)( - 8 + 6i)

 \implies \sf \: 3( - 8 + 6i) + i( - 8 + 6i)

 \implies \sf \:  - 24 + 18i - 8i + 6 {i}^{2}

 \implies \sf \:  - 24 + 10i - 6

 \implies \sf \:  - 30 + 10i

 \implies \boxed{ \bf{ - 30 + 10i}}

The value of this equation is -30+10i.

Similar questions