Math, asked by sehaj7741, 8 months ago

After simplifying, [7(81/3 + 1251/3)]1/4 we get​

Answers

Answered by Anonymous
1

\huge{\fbox{\fbox{\red{Question-}}}}

[\:(7\frac{8}3} + \frac{1251}{3})\:] \frac{1}{4}

\red{\underline{\sf{SolutiOn-}}}

⇒ We are going to solve the sum by the BODMAS method.

= (7\frac{8}3} + \frac{1251}{3})  - \frac{1}{4}

=  \frac{7\:\times\:3\:+\:81}{3} + \frac{1251}{3} - \frac{1}{4}

= \frac{102}{3}  + \frac{1221}{3} - \frac{1}{4}

= \frac{102\:+\:1251}{3} - \frac{1}{4}

= \frac{1324}{3} - \frac{1}{4}

= \frac{1324\:\times\:1}{3\:\times\:4}

= \frac{1324}{12}

{\fbox{\red{1325/12}}}}

Answered by Anonymous
0

[\:(7\frac{8}{3} + \frac{1251}{3})\:] \frac{1}{4}

\red{\underline{\sf{SolutiOn-}}}

⇒ We are going to solve the sum by the BODMAS method.

= (7\frac{8}{3} + \frac{1251}{3}) - \frac{1}{4}

= \frac{7\:\times\:3\:+\:81}{3} + \frac{1251}{3} - \frac{1}{4}

= \frac{102}{3} + \frac{1221}{3} - \frac{1}{4}

= \frac{102\:+\:1251}{3} - \frac{1}{4}

= \frac{1324}{3} - \frac{1}{4}

= \frac{1324\:\times\:1}{3\:\times\:4}

= \frac{1324}{12}

\huge{\fbox{\red{1325/12}}}

Similar questions