after the division of a number successively by 3 4 and 7 the remainders obtained are 2 1 and 4 respectively. what will be the remainder if 84 divides the same number?
Answers
Answered by
0
Then,
x≡2mod3
x≡1mod4
x≡4mod7
Since 3,4,7 are pairwise co-prime. We can apply Chinese remainder theorem.
x=((2×(4×7)×((4×7)−1mod3))+(1×(3×7)×((3×7)−1mod4))+(4×(3×4)×((3×4)−1mod7)))mod(3×4×7)
⟹x=((2×28×(28−1mod3))+(1×21×(21−1mod4))+(4×12×(12−1mod7)))mod84
⟹x=((2×28×1)+(1×21×1)+(4×12×3))mod84
⟹x=(56+21+144)mod84
⟹x=221mod84
⟹x=53.
Similar questions