Math, asked by anushreeapurwaprajap, 3 months ago

Aglass sphere with diameter 3 cm is melted and recasted into 3 smallsphere.If diamter of 2 spheres recasted are 1.5cmand 2cm
respectively find diameter
of third sphere.​

Answers

Answered by aryan073
5

Given :

•A glass sphere with diameter =3cm

•The diameter of spheres recasted =1.5 cm and 2 cm

To Find :

• The diameter of third sphere =?

Formula:

 \\  \red \bigstar\boxed{ \sf{volume \: of \: sphere =  \frac{4}{3} \pi {r}^{3} }} \\  \\

Solution :

Let the radius of third bail be r

⇒The volume of given largest sphere =\sf{\dfrac{4}{3} \pi  \bigg(\dfrac{3}{2} \bigg)^{3} }

⇒The volume of the sphere of diameter 1.5cm =\sf{\dfrac{4}{3} \pi \bigg(\dfrac{1.5}{2} \bigg)^{3} cm^{3} }

⇒The volume of the sphere of diameter 2 cm=\sf{\dfrac{4}{3} \pi \bigg(\dfrac{2}{3} \bigg)^{3} }

⇒The volume of the sphere of radius r=\sf{\dfrac{4}{3} \pi (r)^{3}}

\\ \green{\underline{\sf{According \: to \: given \: conditions }}}

• Volume of the largest sphere =sum of the volume of sphere recasted

 \\  \implies \sf \:  \frac{4}{3} \pi  \bigg({ \frac{3}{2} } \bigg)^{3}  =  \frac{4}{3} \pi \bigg( { \frac{1.5}{2} } \bigg)^{3}  +  \frac{4}{3} \pi {(1)}^{3}  +  \frac{4}{3} \pi {r}^{3}  \\  \\  \\  \implies \sf \:  \:   \bigg({ \frac{3}{2} } \bigg)^{3}  =   \bigg({ \frac{1.5}{2} } \bigg)^{3}  + 1 +  {r}^{3}  \\  \\  \\  \implies \sf \:  \frac{27}{8}  =  \frac{3.375}{8}  + 1 +  {4}^{3}  \\  \\  \\  \implies \sf \:  \frac{27}{8}  =  \frac{27}{64}  + 1 +  {r}^{3}  \\  \\  \\  \implies \sf \:  {r}^{3}  =  \frac{27}{8}  -  \frac{27}{64}  - 1 \\  \\  \\  \implies \sf \:  {r}^{3}  =  \frac{216 - 27 - 64}{64}  \\  \\  \\  \implies \sf \:  {r}^{3}  =  \frac{216 - 91}{64}  \\  \\  \\  \implies \sf \:  {r}^{3}  =  \frac{125}{64}  \\  \\  \\  \implies \sf \:  \:  {r}^{3}  =  \bigg( { \frac{5}{4} } \bigg)^{3}  \\  \\  \\  \implies \boxed{ \sf{r =  \frac{5}{4} }} \:

The diameter of third sphere is =2r

 \\  \\  \implies \sf \: diameter \:  = 2r \\  \\  \\  \implies \sf \: diameter = 2 \times  \frac{5}{4}  \\   \\ \\ \implies \sf diameter =  \frac{5}{2}  \\  \\  \\  \implies \boxed{ \sf{diameter \: of \: third \: sphere = 2.5 \: cm}} \bigstar

Similar questions