English, asked by riyavhandari, 19 days ago

"Ah! nature keep him warm". ( Narration change )

Answers

Answered by CyberBeast
0

Explanation:

Solution−

Given that,

\rm \: f(x) = ln(x) + 3f(x)=ln(x)+3

and

\rm \: g(x) = {e}^{3x}g(x)=e

3x

Now, Consider

\rm \: fog(x)fog(x)

\rm \: = \: f[g(x)]=f[g(x)]

\rm \: = \: f({e}^{3x})=f(e

3x

)

\rm \: = \: ln({e}^{3x}) + 3=ln(e

3x

)+3

We know,

\begin{gathered}\boxed{\tt{ \: \: ln({e}^{x}) = x \: \: }} \\ \end{gathered}

ln(e

x

)=x

So, using this result, we get

\rm \: = \: 3x + 3=3x+3

\rm \: = \: 3(x + 1)=3(x+1)

Hence,

\begin{gathered}\rm\implies \:\rm \: fog(x) = 3(x + 1) \\ \end{gathered}

⟹fog(x)=3(x+1)

Now, Consider

\rm \: gof(x)gof(x)

\rm \: = \: g[f(x)]=g[f(x)]

\rm \: = \: g(lnx + 3)=g(lnx+3)

\rm \: = \: {e}^{3(ln(x) + 3)}=e

3(ln(x)+3)

\rm \: = \: {e}^{3ln(x) + 9}=e

3ln(x)+9

\rm \: = \: {e}^{3ln(x)} \times {e}^{9}=e

3ln(x)

×e

9

We know,

\begin{gathered}\boxed{\tt{ \: y \: ln(x) = ln ({x}^{y}) \: }} \\ \end{gathered}

yln(x)=ln(x

y

)

So, using this, we get

\rm \: = \: {e}^{ln( {x}^{3} )} \times {e}^{9}=e

ln(x

3

)

×e

9

We know

\begin{gathered}\boxed{\tt{ \: {e}^{ln(x)} = x \: }} \\ \end{gathered}

e

ln(x)

=x

So, using this, we get

\begin{gathered}\rm \: = \: {x}^{3} \: {e}^{9} \\ \end{gathered}

=x

3

e

9

Hence,

\begin{gathered}\rm\implies \:\rm \:gof(x) = \: {x}^{3} \: {e}^{9} \\ \end{gathered}

⟹gof(x)=x

3

e

9

Thus,

\begin{gathered}\rm\implies \:\rm \: fog(x) = 3(x + 1) \\ \end{gathered}

⟹fog(x)=3(x+1)

and

\begin{gathered}\rm\implies \:\rm \:gof(x) = \: {x}^{3} \: {e}^{9} \\ \end{gathered}

⟹gof(x)=x

3

e

9

▬▬▬▬▬▬▬▬▬▬▬▬

Answered by rajnandinidut
0

Answer:

It is being asked to keep him warm.

Explanation:

This is ur answer. Hope it helps... :)

Similar questions