Math, asked by hadiashahwarhadialas, 2 months ago

ahmad saves rs 8 in the first week rs 10 in the second week and continues to increase his saving by rs2 each week what would be his total saving at the end of the year?

Answers

Answered by aswaljitendar443
0

Answer:

Answer:

{\underline{\underline{\maltese\textbf{\textsf{\red{Question}}}}}}✠Question

: \implies{\sf\bigg({\dfrac{x}{2} - 6}\bigg) = \bigg({8 - \dfrac{2x}{3}} \bigg)}:⟹(2x−6)=(8−32x)

\begin{gathered}\end{gathered}

{\underline{\underline{\maltese\textbf{\textsf{\red{Solution}}}}}}✠Solution

: \implies{\sf\bigg({\dfrac{x}{2} - 6}\bigg) = \bf\bigg({8 - \dfrac{2x}{3}} \bigg)}:⟹(2x−6)=(8−32x)

{: \implies{\sf\bigg({\dfrac{x - (6 \times 2)}{2}}\bigg) = \bf\bigg({\dfrac{(8 \times 3) - 2x}{3}} \bigg)}}:⟹(2x−(6×2))=(3(8×3)−2x)

{: \implies{\sf\bigg({\dfrac{x - 12}{2}}\bigg) = \bf\bigg({\dfrac{24 - 2x}{3}} \bigg)}}:⟹(2x−12)=(324−2x)

By cross multiplication

: \implies\sf{3(x - 12) = \bf{2(24 - 2x)}}:⟹3(x−12)=2(24−2x)

: \implies\sf{3x - 36 = \bf{48 - 4x}}:⟹3x−36=48−4x

: \implies\sf{4x - 3x = \bf{48 -36}}:⟹4x−3x=48−36

: \implies\sf{x = \bf{12}}:⟹x=12

{\dag{\underline{\boxed{\sf{x =12}}}}}†x=12

Hence, The value of x is 12.

\begin{gathered}\end{gathered}

{{\underline{\underline{\maltese\textbf{\textsf{\red{Verification}}}}}}}✠Verification

: \implies{\sf\bigg({\dfrac{x}{2} - 6}\bigg) = \bf\bigg({8 - \dfrac{2x}{3}} \bigg)}:⟹(2x−6)=(8−32x)

Substituting the value of x

: \implies{\sf\bigg({\dfrac{12}{2} - 6}\bigg) = \bf\bigg({8 - \dfrac{2 \times 12}{3}} \bigg)}:⟹(212−6)=(8−32×12)

: \implies{\sf\bigg({\dfrac{12}{2} - 6}\bigg) = \bf\bigg({8 - \dfrac{24}{3}} \bigg)}:⟹(212−6)=(8−324)

{: \implies{\sf\bigg({\dfrac{12 - (6 \times 2)}{2}}\bigg) = \bf\bigg({\dfrac{(8 \times 3) - 24}{3}} \bigg)}}:⟹(212−(6×2))=(3(8×3)−24)

{: \implies{\sf\bigg({\dfrac{12 -12}{2}}\bigg) = \bf\bigg({\dfrac{24 - 24}{3}} \bigg)}}:⟹(212−12)=(324−24)

{: \implies{\sf\bigg({\dfrac{0}{2}}\bigg) = \bf\bigg({\dfrac{0}{3}} \bigg)}}:⟹(20)=(30)

: \implies\sf{0} = \bf{0}:⟹0=0

\dag{\underline{\boxed{\sf{LHS=RHS}}}}†LHS=RHS

Hence Verified!!

Similar questions