Math, asked by Nereida, 1 year ago

Ahola...!!!


Solve by cross multiplication method :-


(a+2b)x+(2a-b)y=2 ,
(a-2b)x+(2a+b)y=3 .


All the best...!!!​

Answers

Answered by Anonymous
57

SOLUTION

(a+2b)x+(2a-b)y-2=0

(a-2b)x+(2a+b)y-3=0

Here,

a1= a+2b, b1= 2a-b, c1= -2

a2= a-2b, b2= 2a+b, c2= -3

By cross- multiplication, we have

 =  >  \frac{x}{ - 3(2a - b)  - ( - 2)(2a + b)}  =  \frac{ - y}{3(a + 2b) - ( - 2)(a - 2b)}  =  \frac{1}{(a + 2b)(2a + b) - (2a - b)(a - 2b)}  \\  \\  =  >  \frac{x}{ - 6a + 3b + 4a + 2b}  =  \frac{ - y}{ - 3 - 6b + 2a - 4b}  =  \frac{1}{2 {a}^{2} + ab + 4ab + 2 {b}^{2} - (2 {a}^{2}    - 4ab  - ab  + 2 {b}^{2}) } \\  \\  =  >  \frac{x}{ - 2a + 5b}  =  \frac{ - y}{ - a - 10b}  =  \frac{1}{2 {a}^{2} + ab + 4ab + 2 {b}^{2} - (2a {}^{2}  - 4ab -  ab + 2b {}^{2}   }  \\  \\  =  >  \frac{x}{ - 2a + 5b}  =  \frac{ - y}{ - (a + 10b)}  =  \frac{1}{10ab}   \\  \\  =  >  \frac{x}{ - 2a + 5b}  =  \frac{y}{a + 10b}  =  \frac{1}{10ab}  \\  =  > now \\  =  >  \frac{x}{ - 2a + 5b}  =  \frac{1}{10ab}   \\ \\  =  > x =  \frac{5b - 2a}{10ab}  \\ and \:  \\    =  >  \frac{y}{a + 10b}  =  \frac{1}{10ab}    \\  \\  =  > y =  \frac{a + 10b}{10ab}  \\  \\  \\  =  > hence \: x =  \frac{5b - 2a}{10ab}  \: and \: y =   \frac{a + 10b}{10ab}

Hope it helps ✔️


Nereida: thanks raj
Nereida: xD
tina9961: osm ! fantastic !
Answered by janmayjaisolanki78
10

Explanation:

We have (a+2b)x+(2a−b)y=2 ...................(1)

(a−2b)x+(2a+b)y=3 ...................(2)

Adding the two we get 2ax+4ay=5...................(3)

and subtracting (2) from (1), we get

4bx−2by=−1 ...................(4)

Multiplying (3) by 2b and (4) by a, we get

4abx+8aby=10b ...................(5)

and 4abx−2aby=−a ...................(6)

Subtracting (6) from (5), we have

10aby=10b+a or y=10b+a10ab=1a+110b

Multipying (6) by 4 and adding to (5), we get

20abx=10b−4a or x=10b−4a20ab=12a−15b

Plz unblock.....i have to talk to you for 5min.

With regards from..

#@Jai

Similar questions