Math, asked by locomaniac, 1 year ago

ahoy!!

answer this!

differentiate w.r.t x :

=>
log \: (x +  \sqrt{ {x}^{2} +  {a}^{2}  } )
thanks !!

Answers

Answered by asmaanjum1
0
hope it is correct................
Attachments:

locomaniac: ans => 1/ √ x^2 + √a^2
asmaanjum1: how
Answered by siddhartharao77
9
= \ \textgreater \   \frac{d}{dx} log( x +  \sqrt{x^2 + a^2} )

We know that log(x) = 1/x.

= \ \textgreater \   \frac{1}{ \sqrt{x^2 + a^2} + x } *  \frac{d}{dx} [ \sqrt{x^2 + a^2} + x]

= \ \textgreater \   \frac{ \frac{d}{dx}  \sqrt{(x^2 + a^2)} +  \frac{d}{dx} [x] }{ \sqrt{x^2 + a^2} + x}

= \ \textgreater \   \frac{ \frac{d}{dx} (x^2 + a^2)^ \frac{1}{2} +  \frac{d}{dx} x }{ \sqrt{x^2 + a^2} + x }

Note: We know that d/dx(x^1/2) = 1/2x^(1/2 - 1)

= \ \textgreater \   \frac{  \frac{1}{2}  (x^2 + a^2)^{ \frac{1}{2} - 1 }  *  \frac{d}{dx} [x^2 + a^2] + 1  }{ \sqrt{x^2 + a^2} + x }   ------ (1)

= \ \textgreater \   \frac{ \frac{1}{2} (x^2 + a^2)^{ \frac{1}{2} - 1 } * 2x }{ \sqrt{x^2 + a^2} + x }

= \ \textgreater \   \frac{ (x^2 + a^2)^{ \frac{1}{2} - 1 } x }{ \sqrt{x^2+a^2} + x }

= \ \textgreater \   \frac{x(a^2 + x^2)^ -\frac{1}{2} }{ \sqrt{x^2 + a^2} + x }

= \ \textgreater \   \frac{ \frac{x}{ \sqrt{x^2 + a^2} } }{ \sqrt{x^2 + a^2} + x } ----- (2)

Substitute (2) in (1), we get

= \ \textgreater \   \frac{ \frac{x}{ \sqrt{x^2 + a^2}} + 1 }{ \sqrt{x^2 + a^2} + x }


= \ \textgreater \   \frac{x+  \sqrt{a^2 + x^2} }{(x +  \sqrt{a^2 + x^2)  \sqrt{a^2 + x^2} } }

= \ \textgreater \   \frac{1}{ \sqrt{a^2 + x^2} }



Hope this helps!

siddhartharao77: :-)
Anonymous: nice ans
siddhartharao77: Thanks for liking the answer
Anonymous: my pleasure
locomaniac: Thank you so much Bhaiya
siddhartharao77: Thank you for the brainliest...
siddhartharao77: After rationalizing, 1/roota^2 + x^2 also, u will get the same answer...
locomaniac: Okay ^^
Similar questions