Physics, asked by locomaniac, 1 year ago

ahoy !!

can anyone differentiate this?

cos ( 3x - 5 )^2

Answers

Answered by Anonymous
8
Hi,

Here is your answer,

y = (cos(3x-5)²

→ dy/dx = 2 cos (3x-5) × -sin(3x-5) × (3(1) - 0)

→ -6 sin (3x-5) cos (3x-5)

NOTE:- We can also elaborate it further.

→ -3 [ 2 sin(3x-5) × cos(3x-5) ]        Let (3x-5) and (3x-5) be θ.

→ dy/dx = -3 × sin2(3x-5)

→  dy/dx = -3sin(6x-10)    {    FINAL ANSWER   }
Answered by rohitkumargupta
21

\bf HELLO \: \: DEAR, \\  \\ <br />\bf let \: \: y = cos(3x - 5)^{2} <br /><br /> \\  \\ \boxed{\bf put \: \: \: (3x - 5) = t \: \:, y = cost^{2}<br />}<br /><br /> \\  \\ \boxed{\bf put \: \: \: {t}^{2} = z \: \: , y = cosz}<br /><br /> \\  \\ \bf now \: (3x - 5) = t \: \: , \: \: t^{2} = z \: \: , \: \: y = cosz<br /><br /> \\  \\ \bf using \: \: chain \: \: rule \: \: \: dy/dx = dy/dz * dz/dt * dt/dx<br /><br /> \\  \\ \bf dy/dx= d(cosz)/dz * d(t^{2})/dt * d(3x - 5)/dx<br /><br /> \\  \\ \bf dy/dx = (-sinz) * (2t) * (3)<br /><br /> \\  \\ \bf dy/dx = -[sin(3x - 5)^{2} * 2(3x - 5) * (3)]<br /><br /> \\  \\ \bf dy/dx = -6(3x - 5) * sin(3x - 5)^{2}<br /><br /> \\  \\  \\ \boxed{\underline { \bf \: I \: \: HOPE \: \: ITS \: \: HELP \: \: YOU \: \: DEAR,<br />\: \: THANKS}}<br />
Similar questions