Math, asked by Anonymous, 2 months ago

Ajay deposited rupees 20000 in a bank where compound interest at the rate of 6% annually. How much amount he will get at the end of third year. ​

Answers

Answered by pankajyadav123
3

Answer:

Solution :

\sf{\longrightarrow{A=P(1 + \dfrac{R}{100} )^{n}}}

\sf{\longrightarrow{A=20,000 \: (1 \: + \: \dfrac{6}{100} ) ^{3}}}

\sf{\longrightarrow{A=20,000 \: (1 \: + \: 0.06)^{3}}}

\sf{\longrightarrow{A=20,000 \: (1.06) ^{3}}}

\sf{\longrightarrow{A=20,000 \: \times \: 1.191016}}

A = 23,820.32

  • Therefore, he gets Rs. 23,820.32 at the end of 3 years.
Answered by Anonymous
64

Answer:

\begin{gathered}{\underline{\underline{\maltese{\large{\textsf{\textbf{\purple{ Given:}}}}}}}}\end{gathered}

  • \dashrightarrow Principle = Rs.20000
  • \dashrightarrow Rate of Interest = 6%
  • \dashrightarrow Time = 3 years

\begin{gathered}\end{gathered}

\begin{gathered}{\underline{\underline{\maltese{\large{\textsf{\textbf{\purple{ To Find:}}}}}}}}\end{gathered}

  • \dashrightarrow Amount

\begin{gathered}\end{gathered}

\begin{gathered}{\underline{\underline{\maltese{\large{\textsf{\textbf{\purple{ Using Formula:}}}}}}}}\end{gathered}

{\dag{\underline{\boxed{\sf{A ={P{\bigg(1 + \dfrac{R}{100}{\bigg)}^{T}}}}}}}}

Where

  • \Rightarrow A = Amount
  • \Rightarrow P = Principle
  • \Rightarrow R = Rate of Interest
  • \Rightarrow T = Time Period

\begin{gathered}\end{gathered}

\begin{gathered}{\underline{\underline{\maltese{\large{\textsf{\textbf{\purple{ Solution:}}}}}}}}\end{gathered}

 \quad{:  \implies{\sf{Amount ={P{\bigg(1 + \dfrac{R}{100}{\bigg)}^{T}}}}}}

  • Substituting the values

 \quad{:  \implies{\sf{Amount ={20000{\bigg(1 + \dfrac{6}{100}{\bigg)}^{3}}}}}}

 \quad{:  \implies{\sf{Amount ={20000{\bigg(\dfrac{(1 \times 100) + 6}{100}{\bigg)}^{3}}}}}}

 \quad{:  \implies{\sf{Amount ={20000{\bigg(\dfrac{ 100 + 6}{100}{\bigg)}^{3}}}}}}

 \quad{:  \implies{\sf{Amount ={20000{\bigg(\dfrac{ 106}{100}{\bigg)}^{3}}}}}}

 \quad{:  \implies{\sf{Amount ={20000{\bigg( \cancel{\dfrac{106}{100}}{\bigg)}^{3}}}}}}

 \quad{:  \implies{\sf{Amount ={20000{\bigg(\dfrac{53}{50}{\bigg)}^{3}}}}}}

 \quad{:  \implies{\sf{Amount ={20000{\bigg(\dfrac{53}{50} \times \dfrac{53}{50} \times \dfrac{53}{50}{\bigg)}}}}}}

 \quad{:  \implies{\sf{Amount ={20000{\bigg(\dfrac{148877}{125000}{\bigg)}^{3}}}}}}

 \quad{:  \implies{\sf{Amount ={20000 \times \dfrac{148877}{125000}}}}}

 \quad{:  \implies{\sf{Amount = {\cancel{20000} \times \dfrac{148877}{\cancel{125000}}}}}}

 \quad{:  \implies{\sf{Amount ={0.16 \times 148877}}}}

 \quad{:  \implies{\sf{Amount ={Rs.23820.32}}}}

\quad\dag\underline{\boxed{\sf{\red{Amount ={Rs.23820.32}}}}}

  • \dashrightarrow Henceforth,The Amount is Rs.23820.32.

\begin{gathered}\end{gathered}

\begin{gathered}{\underline{\underline{\maltese{\large{\textsf{\textbf{\purple{ Learn More :}}}}}}}}\end{gathered}

\quad\circ{\underline{\boxed{\sf{\red{Amount = Principle + Interest}}}}}

\quad\circ{\underline{\boxed{\sf{\red{ P=Amount - Interest }}}}}

\quad\circ{\underline{\boxed{\sf{\red{ S.I = \dfrac{P \times R \times T}{100}}}}}}

\quad\circ{\underline{\boxed{\sf{\red{P = \dfrac{Amount\times 100 }{100 + (Time \times Rate)}}}}}}

\quad\circ{\underline{\boxed{\sf{\red{P = \dfrac{Interest \times 100 }{Time \times Rate}}}}}}

Similar questions