Math, asked by pravit1, 4 months ago

ajit scored 18 more marks than the pass mark in his exam if the pass Mark is 550find the pass mark.​

Answers

Answered by dikshadevyani120129
1

Answer:

Let x=Total marks

Let x=Total marksLet y=Passing marks

Let x=Total marksLet y=Passing marks38% of Total marks=Passing marks+18 (given)

Let x=Total marksLet y=Passing marks38% of Total marks=Passing marks+18 (given)(38/100)*x=y+18………(1)

Let x=Total marksLet y=Passing marks38% of Total marks=Passing marks+18 (given)(38/100)*x=y+18………(1)27% of Total marks=y-37 (given)

Let x=Total marksLet y=Passing marks38% of Total marks=Passing marks+18 (given)(38/100)*x=y+18………(1)27% of Total marks=y-37 (given)(27/100)*x=y-37……….(2)

Let x=Total marksLet y=Passing marks38% of Total marks=Passing marks+18 (given)(38/100)*x=y+18………(1)27% of Total marks=y-37 (given)(27/100)*x=y-37……….(2)From equation 1&2

Let x=Total marksLet y=Passing marks38% of Total marks=Passing marks+18 (given)(38/100)*x=y+18………(1)27% of Total marks=y-37 (given)(27/100)*x=y-37……….(2)From equation 1&20.38x=y+18

Let x=Total marksLet y=Passing marks38% of Total marks=Passing marks+18 (given)(38/100)*x=y+18………(1)27% of Total marks=y-37 (given)(27/100)*x=y-37……….(2)From equation 1&20.38x=y+180.27x=y-37

Let x=Total marksLet y=Passing marks38% of Total marks=Passing marks+18 (given)(38/100)*x=y+18………(1)27% of Total marks=y-37 (given)(27/100)*x=y-37……….(2)From equation 1&20.38x=y+180.27x=y-37Solving.

Let x=Total marksLet y=Passing marks38% of Total marks=Passing marks+18 (given)(38/100)*x=y+18………(1)27% of Total marks=y-37 (given)(27/100)*x=y-37……….(2)From equation 1&20.38x=y+180.27x=y-37Solving.X=500 & Y=172

Similar questions