ajit scored 18 more marks than the pass mark in his exam if the pass Mark is 550find the pass mark.
Answers
Answered by
1
Answer:
Let x=Total marks
Let x=Total marksLet y=Passing marks
Let x=Total marksLet y=Passing marks38% of Total marks=Passing marks+18 (given)
Let x=Total marksLet y=Passing marks38% of Total marks=Passing marks+18 (given)(38/100)*x=y+18………(1)
Let x=Total marksLet y=Passing marks38% of Total marks=Passing marks+18 (given)(38/100)*x=y+18………(1)27% of Total marks=y-37 (given)
Let x=Total marksLet y=Passing marks38% of Total marks=Passing marks+18 (given)(38/100)*x=y+18………(1)27% of Total marks=y-37 (given)(27/100)*x=y-37……….(2)
Let x=Total marksLet y=Passing marks38% of Total marks=Passing marks+18 (given)(38/100)*x=y+18………(1)27% of Total marks=y-37 (given)(27/100)*x=y-37……….(2)From equation 1&2
Let x=Total marksLet y=Passing marks38% of Total marks=Passing marks+18 (given)(38/100)*x=y+18………(1)27% of Total marks=y-37 (given)(27/100)*x=y-37……….(2)From equation 1&20.38x=y+18
Let x=Total marksLet y=Passing marks38% of Total marks=Passing marks+18 (given)(38/100)*x=y+18………(1)27% of Total marks=y-37 (given)(27/100)*x=y-37……….(2)From equation 1&20.38x=y+180.27x=y-37
Let x=Total marksLet y=Passing marks38% of Total marks=Passing marks+18 (given)(38/100)*x=y+18………(1)27% of Total marks=y-37 (given)(27/100)*x=y-37……….(2)From equation 1&20.38x=y+180.27x=y-37Solving.
Let x=Total marksLet y=Passing marks38% of Total marks=Passing marks+18 (given)(38/100)*x=y+18………(1)27% of Total marks=y-37 (given)(27/100)*x=y-37……….(2)From equation 1&20.38x=y+180.27x=y-37Solving.X=500 & Y=172
Similar questions