CBSE BOARD XII, asked by thakur956929, 5 months ago

Akarsures of Central Tendency - Mean, Median and Mode
10.71
Monthly Salary (Rs.)
Bonus paid (Rs.)
100 - 120
500
120 - 140
600
140 - 160
700
160-180
800
180 - 200
900
200-220
1,000
220 and over
1,100
The actual salaries of the employees are given below :
Rs. 205, 190, 195, 218, 187, 168, 250, 168, 190, 168, 170, 175, 178, 150, 125, 125,
148, 165, 155, 145, 125, 110, 162, 130, 150, 184
Restate the data in the form of a frequency distribution and find out :
(i) the total bonus paid, and (ii) the average bonus paid per employee.
[Ans. (i) Rs. 20,400; (ii) 784.6 rupees.]​

Answers

Answered by chandrasekharsethi01
0

Answer:Mode=125

Explanation:

Class Frequency

f

i

Midvalue

x

i

f

i

x

i

cf

100−200 12 110 1320 12

120−140 14 130 1820 26

140−160 8 150 1200 34

160−180 6 170 1020 40

180−200 10 190 1900 50

∑f

i

=50 ∑f

i

x

i

=7260

⇒ Mean=

f

i

∑f

i

x

i

=

50

7260

=145.2

⇒ We have, N=50. Then,

2

N

=25.

⇒ Median class is 120−140

l= lower limit of the modal class

h= size of the class intervals

f= frequency of the modal class

f

1

= frequency of the class preceding the modal class

f

2

= frequency of the class succeed in the modal class.

⇒ So, l=120,h=20,N=50cf=12,f=14.

Median=l+

f

2

N

−cf

×h

⇒ Median=120+

14

25−12

×20

⇒ Median=120+

7

130

∴ Median=120+18.6=138.6

⇒ Modal class =120−140

⇒ l=120,f=14f

1

=12,f

2

=8,h=20

⇒ Mode=l+

2f−f

1

−f

2

f−f

1

×h

⇒ Mode=120+

2×14−12−8

14−12

×20

⇒ Mode=120+

8

40

∴ Mode=125

Similar questions