Al Ax^3 + bx^2 + x - 6 has x +2
as a factor and leave remainder 4 when divided by x-2
Answers
Answered by
2
Let p(x)=ax 3 +bx 2+x−6
Since (x+2) is a factor of p(x), then by Factor theorem p(−2)=0
⇒a(−2)
3
+b(−2)
2
+(−2)−6=0
⇒−8a+4b−8=0
⇒−2a+b=2
Also when p(x) is divided by (x-2) the remainder is 4, therefore by Remainder theorem p(2)=4
⇒a(2)
3
+b(2)
2
+2−6=4
⇒8a+4b+2−6=4
⇒8a+4b=8
⇒2a+b=2
Adding equation
(−2a+b)+(2a+b)=2+2
⇒2b=4⇒b=2
Putting b=2 in (i), we get
−2a+2=2
⇒−2a=0⇒a=0
,a=0 and b=2
I HOPE THIS IS HELPFUL FOR YOU ☺️
Similar questions