Math, asked by ttansh97, 6 hours ago

al find zeros of quadratic equation and verify the relastionship between them. √2n²+7x+ 5√2​

Answers

Answered by ImperialGladiator
25

Answer:

{ \sf{ \underline{ \: Zeros \: of \:the \: polynomial \: are \:  \dfrac{ - 2}{ \sqrt{2} } \: and  \dfrac{ - 5}{ \sqrt{2} }    }}}

Explanation:

Correct polynomial,

 \rm \implies \:  \sqrt{2}  {x}^{2}  + 7x + 5 \sqrt{2}

On comparing with the general form of a quadratic equation ax² + bx + c

We get,

  • a = √2
  • b = 7
  • c = 5√2

By quadratic formula,

 \rm \implies \: x =  \dfrac{ - b \pm  \sqrt{ {(b)}^{2} - 4ac } }{2a}

 \rm \implies \: x =  \dfrac{ - 7 \pm  \sqrt{ {(7)}^{2} - 4( \sqrt{2} )(5 \sqrt{2})  } }{2( \sqrt{2} )}

 \rm \implies \: x =  \dfrac{ - 7 \pm  \sqrt{49 - 40  } }{2 \sqrt{2} }

 \rm \implies \: x =  \dfrac{ - 7 \pm  \sqrt{9 } }{2 \sqrt{2} }

 \rm \implies \: x =  \dfrac{ - 7 \pm  3 }{2 \sqrt{2} }

 \rm \implies \: x =  \dfrac{ -  7 + 3 }{2 \sqrt{2} }  \: and \:  \dfrac{ - 7 - 3}{2 \sqrt{2} }

 \rm \implies \: x =  \dfrac{ - 4}{2 \sqrt{2} }  \: and \:  \dfrac{ -10}{2 \sqrt{2} }

 \rm \implies \: x =  \dfrac{ - 2}{ \sqrt{2} }  \: and \:  \dfrac{ -5}{ \sqrt{2} }

{ \sf{ \underline{ \therefore \: Zeros \: of \:the \: polynomial \: are \:  \dfrac{ - 2}{ \sqrt{2} } \: and  \dfrac{ - 5}{ \sqrt{2} }    }}}

Verification:

We know,

 \rm \bullet \: sum \: of \: zeros =  \dfrac{ - b}{a}

 \rm \implies \:  \dfrac{ - 2}{ \sqrt{2} }  +  \dfrac{ - 5}{ \sqrt{2} }  =  \dfrac{ - 7}{ \sqrt{2} }

 \rm \implies \:  \dfrac{ - 2 + ( - 5)}{ \sqrt{2} }   =  \dfrac{ - 7}{ \sqrt{2} }

 \rm \implies \:  \dfrac{ - 2 - 5}{ \sqrt{2} }   =  \dfrac{ - 7}{ \sqrt{2} }

 \rm \implies \:  \dfrac{ - 7}{ \sqrt{2} }   =  \dfrac{ - 7}{ \sqrt{2} }

And also,

 \rm \bullet \: product \: of \: zeros \:   = \dfrac{c}{a}

 \rm \implies \:  \dfrac{ - 2}{ \sqrt{2} } \ast \dfrac{ - 5}{ \sqrt{2} }  = \dfrac{5 \sqrt{2} }{ \sqrt{2} }

 \rm \implies \:  \dfrac{ 10}{ {2} }  = 5

 \rm \implies \:  5 = 5

Hence, verified!!

Similar questions