Math, asked by sfffffffffffffffffff, 11 months ago



сalculate the indefinite integral


detailed solution

Attachments:

Answers

Answered by pranjaygupta
0

Step-by-step explanation:

take 4 in common then it's Direct formula

Answered by Anonymous
2

Answer:

\bold\red{\frac{1}{2}  {sin}^{ - 1} 2 x + c}

Step-by-step explanation:

we have to integrate,

\int \frac{1}{ \sqrt{1 - 4 {x}^{2} } } dx

Taking 4 common,

we get,

\int \frac{1}{ \sqrt{4( \frac{1}{4}  -  {x}^{2}) } } dx \\  \\  = \frac{1}{2} \int \frac{1}{ \sqrt{ \frac{1}{4}  -  {x}^{2} } } dx \\  \\  =  \frac{1}{2} \int \frac{1}{ \sqrt{ { (\frac{1}{2}) }^{2} - ( {x}^{2})  } } dx

Now,

we know that,

\int \frac{dx}{ \sqrt{ {a}^{2}  -  {x}^{2} } } =  {sin}^{ - 1}   \frac{x}{a}  + c

Therefore,

we get,

Integration

 =  \frac{1}{2}  {sin}^{ - 1}  \frac{x}{ \frac{1}{2} }  + c \\  \\  =   \bold{\frac{1}{2}  {sin}^{ - 1} 2 x + c}

where,

c is an arbitrary constant

Similar questions