Alfa ,bita, gama are the zeroes of the cubic polynomial x3–2x+qx-r if Alfa +bita =0 then proove 2q=r
Answers
Answered by
0
2q-r
Step-by-step explanation:
x³-2×+qx²-r
zeroes are alpha,beeta,gama
alpha+beeta+gama= -b/a
alpha.beeta +beeta.alpha + alpha.gama= c/a
alpha.beeta.gama = -d/a ( a=1,b= -2,c=q,d= -r)
for simplification, alpha= m, beeta = n, gama = z
m +n+z = 2
z =2 ( given: alpha + beeta=0) ------- (1)
mnz = r
mn.2=r ( from 1 )
mn= r/2---------(2)
mn+nz+zm= q
r/2 + z( n +m)= q
r/2 + 0= q( given)
r = 2q
Hence proved
Similar questions