Math, asked by h5xuc4efqi, 3 months ago

ALGEBRA 1 HELP ASAP PLEASE I GIVE BRAINLIST AND EXTRA POINTS AND THANKS

Attachments:

Answers

Answered by mathdude500
3

Concept Used :-

HOW TO FIND MAXIMUM AND MINIMUM VALUE OF A FUNCTION

Let f(x) be a given function.

Differentiate the given function w. r. t. x.

Put f'(x) = 0, to find critical point or points say 'a'.

Then, find the second derivative f''(x).

Apply those critical points in the second derivative.

The function f (x) is maximum when f''(a) < 0.

The function f (x) is minimum when f''(a) > 0.

\large\underline{\bold{Solution-}}

Let Length of rectangle be 2x

and

Let Breadth of rectangle be y.

So,

Radius of semi - circular portion be 'x'.

Since,

it is given that Perimeter of window = 12 feet.

Therefore,

 \tt \: 2x + y + y + \dfrac{1}{2} (2\pi \: x) = 12

\tt \: 2x + 2y + \pi \:x = 12

 \therefore \: \tt \: y \:  =  \: \dfrac{12 - \pi \:x - 2x}{2}  -  - (1)

Now,

Window is in the form of rectangle surmounted by a semi circle.

So,

Area of window, A

\tt \: A = Area_{(rectangle)} + Area_{(semi - circle)}

\tt \: A = 2xy + \dfrac{1}{2} \pi \: {x}^{2}

Now, Substitute the value of y, evaluated in equation (1),

\tt \: A = 2x\bigg( \dfrac{12 - \pi \:x  - 2x}{2} \bigg)  + \dfrac{\pi \:}{2}  {x}^{2}

\tt \: A = 12x - 2 {x}^{2}  - \pi \: {x}^{2}  + \dfrac{\pi \: {x}^{2} }{2}

\tt \: A = 12x -  2{x}^{2}  - \dfrac{\pi \: {x}^{2} }{2}

On differentiating w. r. t. x, we get

\tt \: \dfrac{dA}{dx}  = 12 - 4x - \pi \:x -  - (2)

For maxima or minima,

\tt \: \dfrac{dA}{dx}  =0

 \therefore \: \tt \: 12 - 4x - \pi \:x = 0

 \therefore \: \tt \: 12  =  4x  +  \pi \:x

 \therefore \: \tt \: x \:  =  \: \dfrac{12}{\pi \: + 4}  -  - (3)

On differentiating both sides w. r. t. x, equation (2), we get

\tt \: \dfrac{d^{2} A}{dx^{2} }  = \:  - 4 - \pi \: &lt; 0

 \therefore \bf \: A \: is \: maximum

Now, Substitute the value of 'x' evaluated in equation (3) in equation (1), we get

\tt \: y \:  =  \: \dfrac{12 - (\pi \: + 2)x}{2}

\tt \: y = \dfrac{12 - (\pi \: + 2) \times \dfrac{12}{\pi \: + 4} }{2}

\tt \: y = \dfrac{12\pi \: + 48 - 12\pi \: - 24}{2(\pi \: + 4)}

 \therefore \: \tt \: y = \dfrac{12}{\pi \: + 4}

Hence,

Dimensions of window are

\tt \: Length = 2x = \dfrac{24}{\pi \: + 4}  \: ft.

and

\tt \: Breadth = y = \dfrac{12}{\pi \: + 4}  \: ft.

Similar questions