Math, asked by binodkumar6572, 5 months ago

Algebraic chapter

Expand the following:

(x - y)2 - (x + y)2​

Answers

Answered by Anonymous
58

Question :-

Expand the following :-

\sf (x - y)^2 - (x + y)^2

Answer :-

Identity used :-

  • \sf (a+b)^2 = a^2 + b^2 + 2ab
  • \sf (a - b)^2 = a^2 + b^2 - 2ab

Solution :-

\sf = (x - y)^2 - (x + y)^2

\sf = x^2 + y^2 - 2xy - [ x^2 + y^2 + 2xy]

\sf = x^2 + y^2 - 2xy - x^2 - y^2 - 2xy

\sf = \cancel{x^2} +  \cancel{y^2} - 2xy - \cancel{x^2 } -  \cancel{y^2} - 2xy

\sf = -2xy - 2xy

\sf = -4xy

\boxed{\sf (x - y)^2 - (x + y)^2 = -4xy}

Answered by Anonymous
47

Answer:

Solution :-

\sf = (x - y)^2 - (x + y)^2=(x−y)

\sf = x^2 + y^2 - 2xy - [ x^2 + y^2 + 2xy]=x

\sf = x^2 + y^2 - 2xy - x^2 - y^2 - 2xy=x

\sf = \cancel{x^2} + \cancel{y^2} - 2xy - \cancel{x^2 } - \cancel{y^2}

\boxed{\sf (x - y)^2 - (x + y)^2 = -4xy}

Similar questions