Math, asked by amarnathakula, 9 months ago

Algebraic identities (a-b)³


please like ​

Attachments:

Answers

Answered by Anonymous
7

 \huge\bf { \red S \green O \pink L \blue U \orange T \purple I  \red O \pink N \green{...}}

\implies\boxed{\sf(a - b {)}^{3}  =  {a}^{3}  - 3 {a}^{2}b + 3 {ab}^{2} - {b}^{3}}

Answered by TheBestWriter
1

Answer:

\begin{gathered}\boxed{\begin{array}{l}\boxed{\bigstar\:\:\textbf{\textsf{Algebric\:Identity}}\:\bigstar}\\\\\frak{1.}\bf\:(A+B)^{2} = A^{2} + 2AB + B^{2}\\\\\frak{2.}\sf\: (A-B)^{2} = A^{2} - 2AB + B^{2}\\\\\frak{3.}\bf\: A^{2} - B^{2} = (A+B)(A-B)\\\\\frak{4.}\sf\: (A+B)^{2} = (A-B)^{2} + 4AB\\\\\frak{5.}\bf\: (A-B)^{2} = (A+B)^{2} - 4AB\\\\\frak{6.}\sf\: (A+B)^{3} = A^{3} + 3AB(A+B) + B^{3}\\\\\frak{7.}\bf\:(A-B)^{3} = A^{3} - 3AB(A-B) + B^{3}\\\\\frak{8.}\sf\: A^{3} + B^{3} = (A+B)(A^{2} - AB + B^{2})\\\\\end{array}}\end{gathered}

Similar questions