Math, asked by Anonymous, 5 months ago

Algebric Identities :
write the algebric identities

Answers

Answered by Anonymous
10

Answer:

Some Standard Algebraic Identities list are given below:

Identity I: (a + b)2 = a2 + 2ab + b2

Identity II: (a – b)2 = a2 – 2ab + b2

Identity III: a2 – b2= (a + b)(a – b)

Identity IV: (x + a)(x + b) = x2 + (a + b) x + ab

Identity V: (a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca

Identity VI: (a + b)3 = a3 + b3 + 3ab (a + b)

Identity VII: (a – b)3 = a3 – b3 – 3ab (a – b)

Identity VIII: a3 + b3 + c3 – 3abc = (a + b + c)(a2 + b2 + c2 – ab – bc – ca)

Answered by Anonymous
50

\mathfrak{dear\;user  }

\mathfrak{question-}\textsf{write the algebric identities}

\mathfrak{here\:is\:the\:solution\:for \:the question  }

\boxed{\begin{minipage}{7 cm}\boxed{\bigstar\:\:\textbf{\textsf{Algebric\:Identity}}\:\bigstar}\\\\1)\bf\:(A+B)^{2} = A^{2} + 2AB + B^{2}\\\\2)\sf\: (A-B)^{2} = A^{2} - 2AB + B^{2}\\\\3)\bf\: A^{2} - B^{2} = (A+B)(A-B)\\\\4)\sf\: (A+B)^{2} = (A-B)^{2} + 4AB\\\\5)\bf\: (A-B)^{2} = (A+B)^{2} - 4AB\\\\6)\sf\: (A+B)^{3} = A^{3} + 3AB(A+B) + B^{3}\\\\7)\bf\:(A-B)^{3} = A^{3} - 3AB(A-B) + B^{3}\\\\8)\sf\: A^{3} + B^{3} = (A+B)(A^{2} - AB + B^{2})\\\\\end{minipage}}

\mathcal{MY\:EXPECTATION\: FOR \:THIS \: ANSWER \:IS  }10\:thanks\:and \:brainlist

\mathcal{BY \:ROSHAN\: A \:USER \: OF \: BRAINLY}

                                                                                    ʙʀᴀɪɴʟʏ  ʀᴏsʜᴀɴ

Similar questions