all 11th and 12th trigonometry formulaes
Answers
Answer:
for class 11 = sin(−θ)=−sinθ
cos(−θ)=cosθ
tan(−θ)=−tanθ
cosec(−θ)=−cosecθ
sec(−θ)=secθ
cot(−θ)=−cotθ
Product to Sum Formulas
sinx siny=12[cos(x–y)−cos(x+y)]
cosxcosy=12[cos(x–y)+cos(x+y)]
sinxcosy=12[sin(x+y)+sin(x−y)]
cosxsiny=12[sin(x+y)–sin(x−y)]
Sum to Product Formulas
sinx+siny=2sin(x+y2)cos(x−y2)
sinx−siny=2cos(x+y2)sin(x−y2)
cosx+cosy=2cos(x+y2)cos(x−y2)
cosx−cosy=–2sin(x+y2)sin(x−y2)
Basic Formulas
sin(A+B)=sinAcosB+cosAsinB
sin(A−B)=sinAcosB–cosAsinB
cos(A+B)=cosAcosB–sinAsinB
cos(A–B)=cosAcosB+sinAsinB
tan(A+B)=tanA+tanB1–tanAtanB
tan(A–B)=tanA–tanB1+tanAtanB
cos(A+B)cos(A–B)=cos2A–sin2B=cos2B–sin2A
sin(A+B)sin(A–B)=sin2A–sin2B=cos2B–cos2A
sin2A=2sinAcosA=2tanA1+tan2A
cos2A=cosA–sin2A=1–2sin2A=2cos2A–1=1−tan2A1+tan2A
tan2A=2tanA1–tan2A
sin3A=3sinA–4sin3A=4sin(60∘−A).sinA.sin(60∘+A)
cos3A=4cos3A–3cosA=4cos(60∘−A).cosA.cos(60∘+A)
tan3A=3tanA–tan3A1−3tan2A=tan(60∘−A).tanA.tan(60∘+A)
sinA+sinB=2sinA+B2cosA−B2
Trigonometry Class 12 Formulas
Definition
θ=sin−1(x)isequivalenttox=sinθ
θ=cos−1(x)isequivalenttox=cosθ
θ=tan−1(x)isequivalenttox=tanθ
Inverse Properties
sin(sin−1(x))=x
cos(cos−1(x))=x
tan(tan−1(x))=x
sin−1(sin(θ))=θ
cos−1(cos(θ))=θ
tan−1(tan(θ))=θ
Double Angle and Half Angle Formulas
sin(2x)=2sinxcosx
cos(2x)=cos2x–sin2x
tan(2x)=2tanx1–tan2x
sinx2=±1–cosx2−−−−−√
cosx2=±1+cosx2−−−−−√
tanx2=1−cosxsinx=sinx1+cosx