Math, asked by Ataraxia, 10 months ago

All edges of a square pyramid are 30 cm each.Find its volume.

plzz don't answer this question if u don't know.

Don't spam​

Answers

Answered by tanishmajumdar2912
2

Answer:

Volume of square pyramid=(a^2)(h/3)

To find h,

As it is a equilateral triangle,

h=a√3/2

 = 30√3/2

= 15√3

Then,

Volume= (30^2)[(15√3)/3]

             =900*5√3

              = 4500√3 cm^2

Therefore,the volume of the pyramid is 4500√3cm^2

Answered by shadowsabers03
4

All edges of the square pyramid are equal to 30 cm each. So the lateral edges and base edges have the same length.

  • \sf{a=e=30\ cm}

where \sf{a} is the base edge and \sf{e} is the lateral edge.

If \sf{h} is the height of the square pyramid,

\longrightarrow\sf{h=\sqrt{e^2-\left[\left(\dfrac{a}{2}\right)^2+\left(\dfrac{a}{2}\right)^2\right]}}

\longrightarrow\sf{h=\sqrt{e^2-\left[\dfrac{a^2}{4}+\dfrac{a^2}{4}\right]}}

\longrightarrow\sf{h=\sqrt{e^2-\dfrac{a^2}{2}}}

Since \sf{e=a,}

\longrightarrow\sf{h=\sqrt{a^2-\dfrac{a^2}{2}}}

\longrightarrow\sf{h=\dfrac{a}{\sqrt2}\quad\quad\dots(1)}

Hence the volume of the square pyramid is,

\longrightarrow\sf{V=\dfrac{1}{3}\,a^2h}

From (1),

\longrightarrow\sf{V=\dfrac{a^3}{3\sqrt2}}

Taking \sf{a=30,}

\longrightarrow\sf{V=\dfrac{30^3}{3\sqrt2}}

\longrightarrow\sf{V=\dfrac{9000}{\sqrt2}}

\longrightarrow\sf{\underline{\underline{V=4500\sqrt2\ cm^3}}}

On taking \sf{\sqrt2=1.414,}

\longrightarrow\sf{\underline{\underline{V=6363\ cm^3}}}

Similar questions