Math, asked by kmir691, 7 months ago

all formula 10th math trangles

Answers

Answered by rekhamnrekhamn564
0

Answer:

the answer is here

Step-by-step explanation:

Algebraic formulas:

(a+b)2 = a2 + b2 + 2ab

(a-b)2 = a2 + b2 – 2ab

(a+b) (a-b) = a2 – b2

(x + a)(x + b) = x2 + (a + b)x + ab

(x + a)(x – b) = x2 + (a – b)x – ab

(x – a)(x + b) = x2 + (b – a)x – ab

(x – a)(x – b) = x2 – (a + b)x + ab

(a + b)3 = a3 + b3 + 3ab(a + b)

(a – b)3 = a3 – b3 – 3ab(a – b)

(x + y + z)2 = x2 + y2 + z2 + 2xy + 2yz + 2xz

(x + y – z)2 = x2 + y2 + z2 + 2xy – 2yz – 2xz

(x – y + z)2 = x2 + y2 + z2 – 2xy – 2yz + 2xz

(x – y – z)2 = x2 + y2 + z2 – 2xy + 2yz – 2xz

x3 + y3 + z3 – 3xyz = (x + y + z)(x2 + y2 + z2 – xy – yz -xz)

x2 + y2 =½ [(x + y)2 + (x – y)2]

(x + a) (x + b) (x + c) = x3 + (a + b +c)x2 + (ab + bc + ca)x + abc

x3 + y3= (x + y) (x2 – xy + y2)

x3 – y3 = (x – y) (x2 + xy + y2)

x2 + y2 + z2 -xy – yz – zx = ½ [(x-y)2 + (y-z)2 + (z-x)2]

Click here to check all algebra formulas

Basic formulas for powers

pm x pn = pm+n

{pm}⁄{pn} = pm-n

(pm)n = pmn

p-m = 1/pm

p1 = p

P0 = 1

Arithmetic Progression(AP) Formulas

If a1, a2, a3, a4, a5, a6,… are the terms of AP and d is the common difference between each term, then we can write the sequence as; a, a+d, a+2d, a+3d, a+4d, a+5d,….,nth term… where a is the first term. Now, nth term for arithmetic progression is given as;

nth term = a + (n-1) d

Sum of the first n terms in Arithmetic Progression;

Sn = n/2 [2a + (n-1) d]

Trigonometry Formulas For Class 10

Trigonometry maths formulas for Class 10 cover three major functions Sine, Cosine and Tangent for a right-angle triangle. Also, in trigonometry, the functions sec, cosec and cot formulas can be derived with the help of sin, cos and tan formulas.

Let a right-angled triangle ABC is right-angled at point B and have ∠θ.

Sin θ= SideoppositetoangleθHypotenuse=PerpendicularHypotenuse = P/H

Cos θ = AdjacentsidetoangleθHypotenuse = BaseHypotenuse = B/H

Tan θ = SideoppositetoangleθAdjacentsidetoangleθ = P/B

Sec θ = 1cosθ

Cot θ = 1tanθ

Cosec θ = 1sinθ

Tan θ = Sin

Similar questions