Math, asked by aswinsajay616, 1 year ago

all formulas for trigonomentry

Answers

Answered by srilakshmi23
1

Sin (– θ) = – Sin θ

Cos (– θ) = Cos θ

Tan (– θ) =– Tan θ

Sec (– θ) = + Sec θ

Cot (– θ) = – Cot θ

We need to understand that trigonometric ratios would change for angles- 90o ± θ and 270o ± θ and they will remain same for 180o ± θ and 360o ± θ. Let’s see what happens when we add or subtract θ from 90o ± θ and 270o ± θ

Sec (90o + θ ) = Cos θ

Cot (90o – θ ) = Cos θ

Tan (90o + θ ) = – Cot θ

Tan (90o – θ ) = Cot θ

Sec (90o + θ ) = Cosec θ

Sec (90o + θ ) = Cosec θ

Sin (270o – θ ) = – Cos θ

Sin (270o – θ ) = – Cos theta

sin2 A+cos2 A=1

sec2A-tan2 A=1

cosec2A-cot2A=1

Answered by Sanjeevliv
1

hey friend, spread love like Shahrukh

__________________

Trigonometry Class 11 Formulas

sin(−θ)=−sinθ

cos(−θ)=cosθ

tan(−θ)=−tanθ

cosec(−θ)=−cosecθ

sec(−θ)=secθ

cot(−θ)=−cotθ

Product to Sum Formulas

sinx siny=12[cos(x–y)−cos(x+y)]

cosxcosy=12[cos(x–y)+cos(x+y)]

sinxcosy=12[sin(x+y)+sin(x−y)]

cosxsiny=12[sin(x+y)–sin(x−y)]

Sum to Product Formulas

sinx+siny=2sin(x+y2)cos(x−y2)

sinx−siny=2cos(x+y2)sin(x−y2)

cosx+cosy=2cos(x+y2)cos(x−y2)

cosx−cosy=–2sin(x+y2)sin(x−y2)

Basic Formulas

sin(A+B)=sinAcosB+cosAsinB

sin(A−B)=sinAcosB–cosAsinB

cos(A+B)=cosAcosB–sinAsinB

cos(A–B)=cosAcosB+sinAsinB

tan(A+B)=tanA+tanB1–tanAtanB

tan(A–B)=tanA–tanB1+tanAtanB

cos(A+B)cos(A–B)=cos2A–sin2B=cos2B–sin2A

sin(A+B)sin(A–B)=sin2A–sin2B=cos2B–cos2A

sin2A=2sinAcosA=2tanA1+tan2A

cos2A=cosA–sin2A=1–2sin2A=2cos2A–1=1−tan2A1+tan2A

tan2A=2tanA1–tan2A

sin3A=3sinA–4sin3A=4sin(60∘−A).sinA.sin(60∘+A)

cos3A=4cos3A–3cosA=4cos(60∘−A).cosA.cos(60∘+A)

tan3A=3tanA–tan3A1−3tan2A=tan(60∘−A).tanA.tan(60∘+A)

sinA+sinB=2sinA+B2cosA−B2

___________________

#SRKfan


Sanjeevliv: ok just tell d i l w a l e
Sanjeevliv: Chennai express?
Sanjeevliv: i fav is fan
Similar questions