Math, asked by lalityadav3572, 1 year ago

all quetion sloved please fast

Attachments:

Answers

Answered by BhawnaAggarwalBT
26
<b >Hey here is your answer

__________________________
__________________________


\color{blue}<br />{\boxed{\mathbb{\underline{QUESTION \: NO \: :- \: 6}}}}<br />

Given :-

<B = 80°
AB = BC

To find :- all the angles of ∆.

In ∆ ABC

AB = BC
<A = <C (angles opposite to equal side of ∆). -(1)

Now ,

In ∆ ABC
<A + <B + <C = 180°. (angle sum property of ∆)
<A + 80° + <A = 180°
2<A = 180° - 80°
2<A = 100°
<A = 100°/2
<A = 50°

so all the angles of ∆ are :-

<A = 50°
<B = 80°
<C = 50°

\color{blue}<br />{\boxed{\mathbb{\underline{QUESTION \: NO \: :- \: 7}}}}<br />

 = \frac{6 - 4\sqrt{3} }{6 + 4 \sqrt{3} } \\ \\ = \frac{6 - 4 \sqrt{3} }{6 + 4 \sqrt{3} } \times\frac{6 - 4 \sqrt{3} }{6 - 4 \sqrt{3} } \\ \\ = \frac{ {(6 - 4 \sqrt{3}) }^{2} }{ {(6)}^{2} - {(4 \sqrt{3}) }^{2} } \\ \\ = \frac{ {(6)}^{2} + {(4 \sqrt{3} )}^{2} - 2 \times 6 \times 4 \sqrt{3} }{36 - 48} \\ \\ = \frac{36 + 48 - 48 \sqrt{3} }{ - 12} \\ \\ = \frac{84 - 48 \sqrt{3} }{ - 12} \\ \\ = \frac{7 - 4 \sqrt{3} }{ - 1} \\ \\ = - 7 + 4 \sqrt{3}

answer

\color{blue}<br />{\boxed{\mathbb{\underline{QUESTION \: NO \: :- \: 8}}}}<br />

evaluate \: \: {( - 12)}^{3} + {7}^{3} + {5}^{3} \\
using identity when a + b + c = 0

 {a}^{3} + {b}^{3} + {c}^{3} = 3abc \\
so,

 = {( - 12)}^{3} + {7}^{3} + {5}^{3} \\ \\ = 3 \times - 12 \times 7 \times 5 \\ \\ = - 1260
answer

\color{blue}<br />{\boxed{\mathbb{\underline{QUESTION \: NO \: :- \: 10}}}}<br />

see in the above attachment pls .

__________________________
__________________________


Hope this helps you

### BE BRAINLY ###
Attachments:

BhawnaAggarwalBT: hey isy answer helpful to u ???
nethranithu: Osm
BhawnaAggarwalBT: thanks
TANU81: Nice
Similar questions