all the formula of trigonometry
Answers
⭐See this .....link
➡https://www.mathwords.com/t/trig_identities.htm
Answer: A.Trigonometry Formulas involving Periodicity Identities:
sin(x+2π)=sinx
cos(x+2π)=cosx
tan(x+π)=tanx
cot(x+π)=cotx
All trigonometric identities are cyclic in nature. They repeat themselves after this periodicity constant. This periodicity constant is different for different trigonometric identity. tan 45 = tan 225 but this is true for cos 45 and cos 225. Refer to the above trigonometry table to verify the values.
B.Trigonometry Formulas involving Cofunction Identities – degree:
sin(90∘−x)=cosx
cos(90∘−x)=sinx
tan(90∘−x)=cotx
cot(90∘−x)=tanx
C.Trigonometry Formulas involving Sum/Difference Identities:
sin(x+y)=sin(x)cos(y)+cos(x)sin(y)
cos(x+y)=cos(x)cos(y)–sin(x)sin(y)
tan(x+y)=tanx+tany1−tanx⋅tany
sin(x–y)=sin(x)cos(y)–cos(x)sin(y)
cos(x–y)=cos(x)cos(y)+sin(x)sin(y)
tan(x−y)=tanx–tany1+tanx⋅tany
D.Trigonometry Formulas involving Double Angle Identities:
sin(2x)=2sin(x).cos(x)
cos(2x)=cos2(x)–sin2(x)
cos(2x)=2cos2(x)−1
cos(2x)=1–2sin2(x)
tan(2x)=[2tan(x)][1−tan2(x)]
E.Trigonometry Formulas involving Half Angle Identities:
sinx2=±1−cosx2−−−−−−√
cosx2=±1+cosx2−−−−−−√
tan(x2)=1−cos(x)1+cos(x)−−−−−−√
Also, tan(x2)=1−cos(x)1+cos(x)−−−−−−√=(1−cos(x))(1−cos(x))(1+cos(x))(1−cos(x))−−−−−−−−−−−−−√=(1−cos(x))21−cos2(x)−−−−−−−−√=(1−cos(x))2sin2(x)−−−−−−−−√=1−cos(x)sin(x) So, tan(x2)=1−cos(x)sin(x)
F.Trigonometry Formulas involving Product identities:
sinx⋅cosy=sin(x+y)+sin(x−y)2
cosx⋅cosy=cos(x+y)+cos(x−y)2
sinx⋅siny=cos(x+y)−cos(x−y)2
G.Trigonometry Formulas involving Sum to Product Identities:
sinx+siny=2sinx+y2cosx−y2
sinx−siny=2cosx+y2sinx−y2
cosx+cosy=2cosx+y2cosx−y2
cosx−cosy=−2sinx+y2sinx−y2
This was all about Trigonometry formulas.