all trigonometry identies of class 11 and 12
I will mark answer as brainlist
Answers
Answer:
thanks
Step-by-step explanation:
sin(−θ)=−sinθ
cos(−θ)=cosθ
tan(−θ)=−tanθ
cosec(−θ)=−cosecθ
sec(−θ)=secθ
cot(−θ)=−cotθ
Product to Sum Formulas
sinx siny=12[cos(x–y)−cos(x+y)]
cosxcosy=12[cos(x–y)+cos(x+y)]
sinxcosy=12[sin(x+y)+sin(x−y)]
cosxsiny=12[sin(x+y)–sin(x−y)]
Sum to Product Formulas
sinx+siny=2sin(x+y2)cos(x−y2)
sinx−siny=2cos(x+y2)sin(x−y2)
cosx+cosy=2cos(x+y2)cos(x−y2)
cosx−cosy=–2sin(x+y2)sin(x−y2)
Identities
sin2 A + cos2 A = 1
1+tan2 A = sec2 A
1+cot2 A = cosec2 A
Sign of Trigonometric Functions in Different Quadrants
Quadrants→ I II III IV
Sin A + + – –
Cos A + – – +
Tan A + – + –
Cot A + – + –
Sec A + – – +
Cosec A + + – –
Basic Trigonometric Formulas for Class 11
cos (A + B) = cos A cos B – sin A sin B
cos (A – B) = cos A cos B + sin A sin B
sin (A+B) = sin A cos B + cos A sin B
sin (A -B) = sin A cos B – cos A sin B
Based on above addition formulas for sin and cos, we get the following below formulas:
sin(π/2-A) = cos A
cos(π/2-A) = -sin A
sin(π-A) = sin A
cos(π-A) = -cos A
sin(π+A)=-sin A
cos(π+A)=-cos A
sin(2π-A) = -sin A
cos(2π-A) = cos A
If none of the angles A, B and (A ± B) is an odd multiple of π/2, then;
tan(A+B)=tanA+tanB1–tanAtanB
tan(A–B)=tanA–tanB1+tanAtanB
If none of the angles A, B and (A ± B) is a multiple of π, then;
cot(A+B)=cotAcotB−1cotB+cotAcot(A−B)=cotAcotB+1cotB−cotA
Some additional formulas for sum and product of angles:
cos(A+B)cos(A–B)=cos2A–sin2B=cos2B–sin2A
sin(A+B)sin(A–B)=sin2A–sin2B=cos2B–cos2A
sinA+sinB=2sinA+B2cosA−B2
Formulas for twice of the angles:
sin2A=2sinAcosA=2tanA1+tan2A
cos2A=cosA–sin2A=1–2sin2A=2cos2A–1=1−tan2A1+tan2A
tan2A=2tanA1–tan2A
Formulas for thrice of the angles:
sin3A=3sinA–4sin3A=4sin(60∘−A).sinA.sin(60∘+A)
cos3A=4cos3A–3cosA=4cos(60∘−A).cosA.cos(60∘+A)
tan3A=3tanA–tan3A1−3tan2A=tan(60∘−A).tanA.tan(60∘+A)
Also check:
mum value of cos2cosθ+sin2sinθ for any real value of θ