Physics, asked by XxRONxX, 9 months ago

alloy change with increase in temperature ?
(d) Find equivalent resistance between A and B in the following diagrams.
12
20
W
402​

Attachments:

Answers

Answered by ibolbam
1

Answer:

Converting the given circuit to the equivalent circuits as shown in figure.

Hence, The equivalent resistance between points A and B is

8

5

(R)

solution

Answered by Anonymous
4

Solution:-

 \to \: \rm R_1 = 12 \Omega \\  \to \: \rm R_2 =  \:  \: 6 \Omega \\ \to  \rm\: R_3 =  \:  \: 4 \Omega \\  \to \:  \rm \: R_4 =  \:  \:  \: 2 \Omega  \\ \to \:  \rm \: R_5 =  \:  \:  \: 5 \Omega

So

 \rm \:  \implies \: R_1,R_2 \:  \: and \:  \: R_3 \:  \: are \:  \: connect \: into \: parallel

Using this formula

 \boxed{ \rm \dfrac{1}{R_p}  =  \dfrac{1}{R_1}  +  \dfrac{1}{R_2}  +  \dfrac{1}{R_3} }

  \to\rm \dfrac{1}{R_p}  =  \dfrac{1}{12}  +  \dfrac{1}{6}  +  \dfrac{1}{4}

\to\rm \dfrac{1}{R_p}  =  \dfrac{1 + 1 \times 2 + 1 \times 3}{12}

\to\rm \dfrac{1}{R_p}  =  \dfrac{6}{12}   =  \dfrac{1}{2}

 \rm \: R_p = 2 \Omega

Let

 \rm \: R_p = R_6

So now

\rm \to R_6 =  \:  \:  \: 2 \Omega \\\to R_4 =  \:  \:  \: 2 \Omega  \\ \to \:  \rm \: R_5 =  \:  \:  \: 5 \Omega

Are connected into series

 \boxed{ \rm \: R_e = R_4 + R_5 + R_6}

 \rm \: R_e = 2 + 5 + 2

 \rm \: R_e = 9 \Omega

So equivalent resistance between A and B is

 \rm \: R_e = 9 \Omega

Similar questions