Math, asked by Greenland5765, 11 months ago

Alpa+Beta are zeroes of 3xsquare-5x+6=0 then alphasquare+betasquare=

Answers

Answered by BrainlyConqueror0901
12

Answer:

\huge{\pink{\green{\sf{\therefore \alpha^{2}+\beta^{2}=4}}}}

Step-by-step explanation:

\huge{\pink{\green{\underline{\red{\sf{SOLUTION-}}}}}}

▪First find the zeroes of this eqn.

• According to given question:

 \:   \: \:  \:  \:  \:  \:  {\orange{ \underline{given}}} \\ { \green{3 {x}^{2}  - 5x + 6 = 0}}  \\ { \green{ \alpha  \: and  \: \beta \: are \: the \: zeroes \: of \: this \: eqn }} \\  \\ { \red{ \underline{to \: find: }}} \\ { \purple{ { \alpha }^{2} +  { \beta }^{2}   = ?}}

▪Using method Quadratic formula.

\to 3 {x}^{2}  - 5x  + 6 \\  \to d =  {b}^{2}  - 4ac \\  \to d =  ({ - 5})^{2}  - 4 \times 3 \times 6 \\  \to d = 25 - 72 \\  \to d =  - 47 \\  \\  \to x =  \frac{ - ( - 5) ±  \sqrt{47} }{2 \times 3}  \\  \to x =  \frac{5 ±\sqrt{47} }{6}  \\   \\   { \green{ \to\alpha  =  \frac{5 +  \sqrt{47} }{6} }} \\ { \green{  \to \beta  =  \frac{5 -  \sqrt{47} }{6} }}

▪We get the value of α and β.

 \to  { \alpha }^{2}  +  { \beta }^{2} =  ({ \alpha  +  \beta })^{2}   - 2 \alpha  \beta  \\  \to { \alpha }^{2}  +  { \beta }^{2} =   (\frac{5 +  \sqrt{47} }{6}  +  \frac{5 -  \sqrt{47} }{6} )^{2}  - 2 \times  \frac{5 +  \sqrt{47} }{6}  \times  \frac{5 -  \sqrt{47} }{6}  \\  \to { \alpha }^{2}  +  { \beta }^{2} =  ({ \frac{5  +  \sqrt{47}  + 5 -  \sqrt{47} }{6} })^{2}  -  \frac{( {5})^{2} -  ({ \sqrt{47} })^{2}   }{18}  \\  \to{ \alpha }^{2}  +  { \beta }^{2} =  ({ \frac{10}{6} })^{2}  -  (\frac{25 - 47}{18} ) \\  \to{ \alpha }^{2}  +  { \beta }^{2} =  \frac{25}{9}  -  (\frac{ - 22}{18} ) \\  \to { \alpha }^{2}  +  { \beta }^{2} =  \frac{50 + 22}{18}  \\  \to { \alpha }^{2}  +  { \beta }^{2} =  \frac{72}{18}  \\  { \green{\therefore { \alpha }^{2}  +  { \beta }^{2} = 4}}

_________________________________________

Similar questions