Math, asked by mamtadevi892040, 11 months ago

alpha and beeta are zeroes of the quadratic polynomial x^2-(k+6)x+2(2k-1). find the value of k if alpha+beeta=1/2alpha*beeta​

Answers

Answered by VishnuPriya2801
20

Answer:-

k = 7.

Explanation:-

Let , a = 1 ; b = -(k + 6) ; c = 2(2k - 1) = 4k - 2.

we \: know \: that \\  \\ sum \: of \: the \: roots \: ( \alpha  +  \beta ) =  \frac{ - b}{a}  \\  \\  \alpha  +  \beta  =   \frac{ - ( - k - 6)}{1}  \\  \\ product \: of \: the \: rooyts( \alpha  \beta ) =  \frac{c}{a}  \\  \\  \alpha  \beta   =  \frac{4k - 2}{1}  \\  \\  \alpha  \beta  = 4k - 2 \\  \\ and \: also \: given \: that \:  \alpha  +  \beta  =  \frac{1}{2}  \times  \alpha  \beta  \\  \\ k + 6 =  \frac{1}{2}  \times 4k - 2 \\  \\ k + 6 =  \frac{2(2k - 1)}{2}  \\  \\ k + 6 = 2k - 1 \\  \\ k - 2k =  - 1 - 6 \\  \\  - k =  - 7 \\  \\ k = 7

Hence, the value of "k" is 7.

Similar questions