Alpha and beta are eccentric angles of two points a and b on the ellipse x^2/a^2 + y^2/b^2=1.If p(acostheta,bsintheta) be any point on the same ellipse such that the area of triangle pab is maximum then prove that theta=alpha+beta/2
Answers
Answered by
0
Step-by-step explanation:
Area =
acosθ
acosα
acosβ
bsinθ
bsinα
bsin
so, Area max
dθ
dA
asinθ
acosα
acosβ
bsinθ
bcosα
bsinβ
1
1
1
=0 (for maxime)
=−asinθ[bsinα−bsinβ]−bcosθ[acosα−acosβ]
=ab[−(cos(θ−α)+cos(θ−β))]=0
∴cos(θ−β)=cos(θ−α)
∴cos(−θ)=cos(θ)
⇒θ−β=−(θ−α) or θ−β=−(θ−α)
∴β=θ
θ=
2
α+β
Similar questions