Math, asked by tushar49725, 1 year ago

alpha and beta are the polynomial of the p(x)ax2+bx+c then find alpha cube+ beta cube​

Answers

Answered by Anonymous
3

Answer:

  \huge \bf{question } \\  \\  if \:  \alpha \: and \:   \beta \: are \: the \: polynomials \: of \\ a {x}^{2}  + bx + c = 0 \: find \:  \:  { \alpha}^{3}  \:  +  { \beta}^{3}  \\  \\  \huge  \red{\bf{solution}} \\  \\  \\  \implies \alpha +  \beta =  \frac{ - b}{a}  \\  \implies \:  \alpha \beta =  \frac{c}{a}  \\  \\ now \: \\  \\  \implies {  \alpha}^{3}  +  { \beta}^{3}  = ( \alpha +  \beta)( { \alpha}^{2}  +  { \beta}^{2}  -  \alpha \beta) \\  \\  \implies { \alpha}^{3}  +  { \beta}^{3}  = ( \frac{ - b}{a} ) \bigg( {( \alpha +  \beta)}^{2}  - 3 \alpha \beta \bigg) \\  \\  \implies \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \frac{ - b}{a}  \bigg( \frac{ {b}^{2} }{ {a}^{2} }  - 3 \frac{c}{a}  \bigg)

Similar questions