Math, asked by khairnartejas2408, 8 months ago

alpha and beta are the roots of the equation ax ^2 + bx + c=0 then the equation whose roots are alpha + 1/ beta and beta + 1/alpha is​

Attachments:

Answers

Answered by vedantvispute38
1

Step-by-step explanation:

a {x}^{2}  + bx + c = 0

 \alpha  +  \beta  =  \frac{ - b}{a}  \\  \alpha  \beta  =  \frac{c}{a}  \\

So, Our needs are

 \alpha  +  \frac{1}{ \beta }   \\  \beta   +  \frac{1}{ \alpha }

Now, we want a equation with the sum -

 \alpha  +  \beta  +  \frac{1}{ \beta }  +  \frac{1}{ \alpha }  \\  =  \frac{ - b}{a}  +  \frac{ \alpha  +  \beta }{ \alpha  \beta }  \\  =  \frac{ - b}{a}  +   \frac{\frac{ - b}{a}}{ \frac{c}{a} }   \\  =  \frac{ - b}{a }  +  \frac{ - b}{c}  \\  =  \frac{ - bc + - ab}{ac}

We want the multiplication as -

( \alpha  +  \frac{1}{ \beta } )( \beta  +  \frac{1}{ \alpha } ) \\  =  \alpha  \beta  + 1 + 1 +  \frac{1}{ \alpha  \beta }  \\  =  \frac{c}{a}  + 2 +  \frac{a}{c}  \\  =   \frac{ {a}^{2} +  {c}^{2}  }{ac}+ 2 \\  = \frac{ {a}^{2} +  {c}^{2}  + 2ac }{ac} \\  =  \frac{ {(a + c)}^{2}}{ac}

The new formed equation is :

p(x) = k( {x}^{2}  + ( \frac{ {(a + c)}^{2}}{ac} +  \frac{ - bc + - ab}{ac} )x + ( \frac{ {(a + c)}^{2}}{ac} \times   \frac{ - bc + - ab}{ac}) \\  = ...

you should now evaulate more to get the equation.

Similar questions