Math, asked by Lakshmiashok7669, 10 days ago

Alpha and Beta are the roots of x2+x-2=0,find the value of 1/a2+1/B2

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\: \alpha , \:  \beta  \: are \: roots \: of \:  {x}^{2} + x - 2 = 0.

We know that

\boxed{\red{\sf Sum\ of\ the\ roots=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

\bf\implies \: \alpha  +  \beta  =  - \dfrac{1}{1}  =  - 1

And

\boxed{\red{\sf Product\ of\ the\ roots=\frac{Constant}{coefficient\ of\ x^{2}}}}

\bf\implies \: \alpha  \beta  = \dfrac{ - 2}{1} =  - 2

Now, Consider

\rm :\longmapsto\:\dfrac{1}{ { \alpha }^{2} }  + \dfrac{1}{ { \beta }^{2} }

\rm \:  =  \: \dfrac{ { \beta }^{2}  +  { \alpha }^{2} }{ { \alpha }^{2} { \beta }^{2} }

\rm \:  =  \: \dfrac{ { \beta }^{2}  +  { \alpha }^{2}  + 2 \alpha  \beta  - 2 \alpha  \beta }{ { \alpha }^{2} { \beta }^{2} }

\rm \:  =  \: \dfrac{ {( \alpha  +  \beta )}^{2}  - 2 \alpha  \beta }{ {( \alpha  \beta )}^{2} }

\rm \:  =  \: \dfrac{ {( - 1)}^{2}  - 2( - 2)}{ {( - 2)}^{2} }

\rm \:  =  \: \dfrac{1 + 4}{4}

\rm \:  =  \: \dfrac{5}{4}

Hence,

\rm :\longmapsto\:\boxed{ \tt{ \: \dfrac{1}{ { \alpha }^{2} }  + \dfrac{1}{ { \beta }^{2} } =  \frac{5}{4} \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Learn More :-

\boxed{ \tt{ \:  { \alpha }^{2} +  { \beta }^{2} =  {( \alpha  + \beta )}^{2}  - 2 \alpha  \beta  \: }}

\boxed{ \tt{ \:  { \alpha }^{3} +  { \beta }^{3} =  {( \alpha  + \beta )}^{3}  - 3 \alpha  \beta ( \alpha   + \beta ) \: }}

\boxed{ \tt{ \:  {( \alpha   - \beta)}^{2}  =  {( \alpha  +  \beta)}^{2}  - 4 \alpha  \beta }}

Similar questions