alpha and beta are the zeroes of the polynomial x^2-px-q then find the value of each of the following...
Only Correct Answers!
Answers
Question:-
If α , β are the zeroes of the polynomial x² - px + q then find the value of each of the following.
i) α² + β²
ii) (α/β) + (β/α)
iii) α³ + β³
iv) α³β² + α²β³
v) αβ³ + α³β
vi) α - β
vii) α³ - β³
Answer:-
Given:
α , β are the zeroes of the polynomial x² - px + q
On comparing it with standard form of a quadratic equation i.e., ax² + bx + c = 0 ;
Let,
- a = 1
- b = - p
- c = q.
We know that,
Sum of the roots = - b/a
So,
⟹ α + β = - ( - p)/1
⟹ α + β = p -- equation (1)
Product of the roots = c/a
⟹ αβ = q -- equation (2)
We have to find:-
i) α² + β²
We know that,
a² + b² = (a + b)² - 2ab
So,
⟹ α² + β² = (α + β)² - 2αβ
Putting the respective values from equations (1) & (2) we get,
⟹ α² + β² = (p)² - 2(q)
⟹ α² + β² = p² - 2q
___________________________
ii) (α/β) + (β/α)
Taking LCM we get,
⟹ (α² + β²) / αβ
Putting the respective values we get,
⟹ (α/β) + (β/α) = (p² - 2q)/q
___________________________
iii) α³ + β³
We know,
a³ + b³ = (a + b)³ - 3ab(a + b)
So,
⟹ α³ + β³ = (α + β)³ - 3αβ(α + β)
Putting the values we get,
⟹ α³ + β³ = (p)³ - 3(q)(p)
⟹ α³ + β³ = p³ - 3pq
___________________________
iv) α³β² + α²β³
Taking α²β² common we get,
⟹ α²β² (α + β)
⟹ (αβ)² (α + β)
⟹ (q)² (p)
⟹ α³β² + α²β³ = pq²
___________________________
v) αβ³ + α³β
Taking αβ common we get,
⟹ (αβ) (α² + β²)
Putting the respective values we get,
⟹ (q) (p² - 2q)
⟹ αβ³ + α³β = p²q - 2q²
___________________________
vi) α - β
We know that,
(a - b)² = a² + b² - 2ab
So,
⟹ (α - β)² = (α² + β²) - 2αβ
Putting the respective values we get,
⟹ (α - β)² = p² - 2q - 2q
⟹ (α - β)² = p² - 4q
⟹ α - β = √(p² - 4q)
___________________________
vii) α³ - β³
We know that,
a³ - b³ = (a - b)³ + 3ab(a - b)
So,
⟹ α³ - β³ = (α - β)³ + 3αβ(α - β)
⟹ α³ - β³ = (√p² - 4q)³ + 3(q)(√p² - 4q)
⟹ α³ - β³ = (p² - 4q)(√p² - 4q) + 3q (√p² - 4q)
Taking √p² - 4q common in RHS we get,
⟹ α³ - β³ = (√p² - 4q) (p² - 4q + 3q)
⟹ α³ - β³ = (√p² - 4q)(p² - q)
___________________________
Answer:
Given Polynomial : x² - px + q
- Here a = 1 , b = -p, c = q
Sum of zeroes:
Product of zeroes:
(I) α² + β² :-
(II) α/β + β/α :-
(III) α³ + β³:-
(IV) α³β² + α²β³:-
(V) αβ³ + α³β :-
(VI) α - β:-
(VII) α³ - β³ :-
Note:
- (VII) sum solution in attachment.