Math, asked by xoxo133, 2 months ago

alpha and beta are the zeroes of the polynomial x^2-px-q then find the value of each of the following...
Only Correct Answers!​

Attachments:

Answers

Answered by VishnuPriya2801
61

Question:-

If α , β are the zeroes of the polynomial x² - px + q then find the value of each of the following.

i) α² + β²

ii) (α/β) + (β/α)

iii) α³ + β³

iv) α³β² + α²β³

v) αβ³ + α³β

vi) α - β

vii) α³ - β³

Answer:-

Given:

α , β are the zeroes of the polynomial x² - px + q

On comparing it with standard form of a quadratic equation i.e., ax² + bx + c = 0 ;

Let,

  • a = 1
  • b = - p
  • c = q.

We know that,

Sum of the roots = - b/a

So,

⟹ α + β = - ( - p)/1

⟹ α + β = p -- equation (1)

Product of the roots = c/a

αβ = q -- equation (2)

We have to find:-

i) α² + β²

We know that,

+ = (a + b)² - 2ab

So,

⟹ α² + β² = (α + β)² - 2αβ

Putting the respective values from equations (1) & (2) we get,

⟹ α² + β² = (p)² - 2(q)

⟹ α² + β² = p² - 2q

___________________________

ii) (α/β) + (β/α)

Taking LCM we get,

⟹ (α² + β²) / αβ

Putting the respective values we get,

⟹ (α/β) + (β/α) = (p² - 2q)/q

___________________________

iii) α³ + β³

We know,

+ = (a + b)³ - 3ab(a + b)

So,

⟹ α³ + β³ = (α + β)³ - 3αβ(α + β)

Putting the values we get,

⟹ α³ + β³ = (p)³ - 3(q)(p)

⟹ α³ + β³ = p³ - 3pq

___________________________

iv) α³β² + α²β³

Taking α²β² common we get,

⟹ α²β² (α + β)

⟹ (αβ)² (α + β)

⟹ (q)² (p)

⟹ α³β² + α²β³ = pq²

___________________________

v) αβ³ + α³β

Taking αβ common we get,

⟹ (αβ) (α² + β²)

Putting the respective values we get,

⟹ (q) (p² - 2q)

⟹ αβ³ + α³β = p²q - 2q²

___________________________

vi) α - β

We know that,

(a - b)² = +- 2ab

So,

⟹ (α - β)² = (α² + β²) - 2αβ

Putting the respective values we get,

⟹ (α - β)² = p² - 2q - 2q

⟹ (α - β)² = p² - 4q

⟹ α - β = √(p² - 4q)

___________________________

vii) α³ - β³

We know that,

a³ - b³ = (a - b)³ + 3ab(a - b)

So,

⟹ α³ - β³ = (α - β)³ + 3αβ(α - β)

⟹ α³ - β³ = (√p² - 4q)³ + 3(q)(√p² - 4q)

⟹ α³ - β³ = (p² - 4q)(√p² - 4q) + 3q (√p² - 4q)

Taking p² - 4q common in RHS we get,

⟹ α³ - β³ = (√p² - 4q) (p² - 4q + 3q)

⟹ α³ - β³ = (√p² - 4q)(p² - q)

___________________________

Answered by Anonymous
41

Answer:

Given Polynomial : x² - px + q

  • Here a = 1 , b = -p, c = q

Sum of zeroes:

 \alpha +  \beta =  \frac{ - b}{a}  =  \frac{ p}{1}  = p \\

Product of zeroes:

 \alpha \beta =  \frac{c}{a}  =  \frac{q}{1}  = q \\

(I) α² + β² :-

 { \alpha}^{2}  +   {\beta}^{2}  =  {(\alpha +  \beta)}^{2}  - 2 \alpha \beta \\  \\ { \alpha}^{2}  +   {\beta}^{2}  =  {p}^{2}   - 2q

(II) α/β + β/α :-

 \frac{ \alpha}{ \beta}  +  \frac{ \beta}{ \alpha}  =  \frac{ { \alpha}^{2}  +   { \beta}^{2} }{ \alpha \beta}  \\  \\ \frac{ \alpha}{ \beta}  +  \frac{ \beta}{ \alpha}  = \frac{ {p}^{2}  - 2q}{q}

(III) α³ + β³:-

 { \alpha}^{3}  +  { \beta}^{3}  =  {( \alpha +  \beta)}^{3}  - 3 \alpha \beta( \alpha \:  +  \beta) \\  \\ { \alpha}^{3}  +  { \beta}^{3}  =  {p}^{3}  - 3pq

(IV) α³β² + α²β³:-

 { \alpha}^{3}  { \beta}^{2}  +  { \alpha}^{2}  { \beta}^{3}  =  { \alpha}^{2}   { \beta}^{2} ( \alpha +  \beta)  \\  \\  { (\alpha \beta)}^{2} ( \alpha +  \beta) = p {q}^{2}

(V) αβ³ + α³β :-

 \alpha { \beta}^{3}  +   { \alpha}^{3} \beta  =  \alpha \beta( { \alpha}^{2}  +   {\beta}^{2} ) \\  \\ \alpha { \beta}^{3}  +   { \alpha}^{3} \beta  = {p}^{2} q - 2 {q}^{2}

(VI) α - β:-

 {(\alpha -  \beta)  }^{2}  =  { \alpha}^{2} +  { \beta}^{2}  - 2 \alpha \beta \\  \\   {(\alpha -  \beta ) }^{2} =  {p}^{2}  - 4q \\  \\ \alpha -  \beta = \sqrt{ p²- 4q }

(VII) α³ - β³ :-

  { \alpha}^{3}  -  { \beta}^{3}  =  {( \alpha -  \beta)}^{3}  + 3 \alpha \beta( \alpha -  \beta) \\  \\ { \alpha}^{3}  -  { \beta}^{3} = \sqrt{( {p}^{2} - 4q)}( p² - q)

Note:

  • (VII) sum solution in attachment.

Attachments:
Similar questions