alpha and beta are the zeros of the quadratic polynomial ax + bx+c find the value of (a) alpha^2+beta^2
b) alpha^2-beta^2
Answers
Answered by
2
Step-by-step explanation:
(a) alpha+beta = -b/a
= (alpha+beta)² = (-b/a)² (squaring both side)
=alpha²+beta²+2alpha×beta=b²/a²
=alpha²+beta²=b²/a²-2alpha×beta
as alpha×beta=c/a
alpha²+beta²=b²/a²-2c/a
=(b²-2ac)/a²
(b). alpha²+beta²-2alpha.beta
=(b²-2ac)/a²-2c/a
=(b²-2ac-2ac)/a²
=(b²-4ac)/a²
as alpha²+beta²-2alpha.beta=(alpha-beta)²
(b²-4ac)/a²=(alpha-beta)²
alpha-beta={(b²-4ac)/a²}^½
alpha-beta=(b²-4ac)^½/a
we have to find alpha²-beta²
alpha²-beta²=(alpha+beta)(alpha-beta)
=(-b/a){(b²-4ac)^½/a}
= {-b(b²-4ac)^½}/a
HOPE IT IS HELPFUL
Similar questions