Math, asked by devnajinadev, 2 months ago

alpha and beta are the zeros of the quadratic polynomial f(x)=ax²+bx+c then evaluate... alpha-beta..class 10​

Answers

Answered by iskcon48
0

Step-by-step explanation:

alpha= -b+√b^2-4ac/2a

beta= -b-√b^2 -4ac/2a

Answered by SavageBlast
211

Answer:

Given:-

  • α and β are the zeroes of the quadratic polynomial f(x) = ax² + bx + c

To Do:-

  • Evaluate:- alpha - beta (or) α - β

Solution:-

Given polynomial,

f(x) = ax² + bx + c ━━━━ (1)

Since, α and β are the zeroes of given polynomial.

So,

  • α+β \:=\: \dfrac{−b}{a}

  • αβ\:= \: \dfrac{c}{a}

Therefore,

⇒ (α+β)² = α² + β² + 2αβ

(\dfrac{−b}{a})² = α² + β² + \dfrac{c}{a}

⇒ α² + β² = \dfrac{b²}{a²} - \dfrac{c}{a}

Now,

⇒ (α-β)² = α² - β² + 2αβ

⇒ (α-β)² = \dfrac{b²}{a²} - \dfrac{c}{a} + 2\dfrac{c}{a}

⇒ (α-β)² = \dfrac{b²}{a²} - \dfrac{c}{a}

⇒ α-β = \sqrt{\dfrac{b²}{a²} - \dfrac{c}{a}}

Hence, the value of α - β is

{\bold{\sqrt{\dfrac{b²}{a²} - \dfrac{c}{a}}}}

━━━━━━━━━━━━━━━━━━

Similar questions