Math, asked by grace8027, 3 months ago

alpha and beta are zeroes of the polynomial 2x^2 - 8x + 5 find the value of ( alpha + 1/beta ) x ( beta + 1/alpha ) [ answer fast please ]

Answers

Answered by Anonymous
104

Given Equation

\sf\to 2x^2-8x+5

To Find

\to\sf\bigg(\alpha +\dfrac{1}{\beta } \bigg)\times\bigg(\beta  +\dfrac{1}{\alpha  } \bigg)

Now Take

\sf\to 2x^2-8x+5

Compare with

\sf ax^2+bx+c=0

We get , a = 2 , b = -8 and c= 5

We Know that

\sf\to\alpha +\beta =\dfrac{-b}{a}

\sf\to\alpha \beta =\dfrac{c}{a}

So

\sf\to\alpha +\beta =\dfrac{-(-8)}{2} = 4

\sf\to\alpha \beta =\dfrac{5}{2}

Now simplify

\to\sf\bigg(\alpha +\dfrac{1}{\beta } \bigg)\times\bigg(\beta  +\dfrac{1}{\alpha  } \bigg)

\sf\to\bigg(\alpha \beta +\dfrac{\alpha }{\alpha } +\dfrac{\beta }{\beta } +\dfrac{1}{\alpha \beta } \bigg)

\sf\to\bigg(\alpha \beta +1+1+\dfrac{1}{\alpha \beta } \bigg)

\sf\to\bigg(\alpha \beta +2+\dfrac{1}{\alpha \beta } \bigg)

Now put the value

\sf\to\bigg(\dfrac{5}{2} +2+\dfrac{1}{\dfrac{5}{2} } \bigg)

\sf\to\bigg(\dfrac{5}{2} +2+\dfrac{2}{{5}{} } \bigg)

\sf\to\dfrac{25+20+4}{10}

\sf\to \dfrac{49}{10}

Answer

\sf\to \dfrac{49}{10}

Answered by moumithashree2007
3

Answer:

Step-by-step explanation:

Attachments:
Similar questions