Math, asked by jyotsna999, 8 months ago

alpha and beta are zeroes of the polynomial 3x^+2x+3 then find 1/alpha^+ 1/beta^​

Answers

Answered by jaidansari248
0

Answer:

zeroes \: (roots) \:  :  \:  \alpha  \:  \:  and\:  \:  \beta  \\ product \: of \: zeroes =  \alpha  \beta  \\  =    \frac{constant \: term}{coeffecient \: of \:  {x}^{2} }  =  \frac{3}{3}  = 1 \\s um \: of \:z eroes \:  =  \alpha  +  \beta  \\  =  \frac{coeffecient \: of \: x}{coeffecient \: of {x}^{2} }  =  \frac{2}{3 }  \\   =  >  >  \\  \frac{ \alpha +   \beta }{ \alpha  \beta }  =  \frac{ \alpha }{ \alpha  \beta }  +  \frac{ \beta }{ \alpha  \beta }  \\  =  \frac{1}{ \beta }  +  \frac{1}{ \alpha }  \\  =  \frac{ \frac{2}{3} }{1}  =  \frac{2}{3}

Similar questions